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OUTLINE

Development of GW astronomy

Autoregressive Approach in GW detection

Improving deep learning classification ot GW
spectrograms with GAN



-EXISTENCE OF GW

G,=—-T 0°h
Hv c4 M UL — 0
8 = M + h,m/ dxaaxa
(h,, < 1)

In a limit of small disturbance from a flat spacetime,
Einstein tield equation reduces to a linear wave
equation.

Implication on the disturbance can be seen from the
constant appears in Einstein field equation.



"STIFFNESS" OF SPACETIM

C4 Require a stress of
- — ™ 10 Nm~2 to give a
87TG curvature of ~ 1m™

The amplitude of GW is hence very small.

GW sources must involve huge masses and/or catastrophic events.

Despite the small amplitude, a large amount of energy can be
carried by GW.



TWO POLARIZATION STATES

* Passage of GW can be revealed by investigating the motion of

test masses lying in its path of propagation

* Interferometry is most suitable for detecting GW







FIRST BLACK HOLE MERGER - GW1509214
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On September 14, 2015, LIGO observed gravitational waves from the
merger of two black holes, each about 30 times the mass of our sun.
The powertful event releases ~ 3M®C2 within a fraction of a second.



Masses in the Stellar Graveyard
LIGO-Virgo-KAGRA Black Holes LIGO-Virgo-KAGRA Neutron Stars EM Neutron Stars
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90 GW events have been detected so far in GWTC-3



PROGRESS OF GW ASTRONOMY

Increasing the number of observatories

Installation of space-based/Galaxy-based
observatories

Improving the sensitivity

Improving the performance in signal processing



INTERNATIONAL GW NETWORK

More precise source localization
More certain parameter estimation
Lower false alarm rate

More information of polarization




INTERNATIONAL GW NETWORK
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Hisaaki Shinkai (Osaka Inslilule of Technolo L ohysics, Slalus of KAGRA" Cosmology From Home 202
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ENSITIVITY CURV

vibration control thermal control

(SEISMIC NOISe)  (thermal noise)

10718,
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advanced LIGO
(2015--)

(shot noise)
: 1021 high-power

1 1
oy 0* laser control
Fig. 7. The expected total noise in each of
LIGO's first 4-km interferometers (upper solid
curve) and in a more advanced interferometer
(lower solid curve). The dashed curves show
various contributions to the first interferometer's

noise.

Abramovici et al. 1992 Science 256 325



KAGRA

Underground Cryogenic Fabry-Perot Interferometer
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VIBRATION ISOLATION SYSTEMS+ CYROSTAT
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VIBRATION ISOLATION SYSTEMS+ CYROSTAT

W St/ ‘ 4

Cyrostat cools the test mass

(Sapphire mirror) to ~20 K
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SILTERING

Assume the data stream is x(¢) = h(r) + n(r) where h(¢) is the
signal and n(t) is the wide-sense stationary noise, s.t.

(n(@)) = (nt+1)) (nOn)) = (nt+ 7)n(t' + 7)) V1

With the stationarity assumption, we can take (n(r)) = 0

Autocorrelation of noise: (n(f)n(t)) = K(t — t')

Fourier transtorm of K(t — ') give power spectral density of noise:

(n(HHn*(f)) = S,(Ho(f = 1)

Consider an arbitrary filter F(?), s.t.

c= ro F(O)x(t)dt = J

F*(Hx(fHdf  ceR

— Qo0



THEORY OF MATCHED FILTERING
K. = <C> — <Jm F*(f)x(f)df> — “OO F*(f)h(f)df (By Zero-mean

stationary noise)
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Define signal-to-noise ratio (SNR):

1 (F)
o.(F)

p(F) =



THEORY OF MATCHED :ILTEf)RING
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MATCHED FILTERING

- Data
Template
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A signal at 1126259462.42s with SNR 19.1247029698 is found.

Matched ftiltering is an established way for detecting GW signal.

Matched filter can be obtain by correlating a template /(1) (with
known form) with an unknown time series to detect the presence

of the template in the signal.




MATCHED FILTER

Ix1| < 0.9895, |x2| < 0.05 The template bank used

|x1,2| < 0.05 in O1 covers a 4D
Ix1,2| < 0.9895
GW150914
GW151226
LVT151012 (gstlal)
LVT151012 (PyCBC),”

parameter space.

Assume the binaries are
circular with the BH spins
aligned/anti-aligned with
the orbital angular
momentum.

~250000 template are
generated for the search.




SHORTCOMINGS OF MATCHED FILTERING

Require an exact form to be known in advance

Computationally expensive

Assumptions for its optimal performance might not be
fultilled (i.e. stationary, zero-mean, white noise)

Do not enable direction visualization of the waveform
from the data



T. AUTOREGRESSIVE
MODELING



-DUCTION

[l
AJ

IMPROVE NOIS

Enable us to...
1. Search for fainter sources (e.g. continuous wave, CCSNe)

2. More accurate parameter estimation (including
localization)

3. Test GR at the limit of strong field



NOISE REDUCTION WITH STOCHASTIC
AUTOREGRESSIVE MODELING

Computationally simple

Capable to handle various kinds of noise from non-
stationary autocorrelated stochastic processes.

Many applications in diverse fields (e.g. ECG,
econometrics), but not many in astronomy until
recently (e.g. exoplanet search, Caceres et al. 2019)
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AUTOREGRESSIVE INTEGRATED
MOVING AVERAGE (ARIMA) MODEL

Combining the autoregressive (AR), moving average
(MA) and integrated (I) processes together into a single
regression procedure, we have ARIMA(p,g,d) model:

P q
(1 — B)%x, = Z ax,_; + Z b€, i+ € +c
i=1 j=1

The model parameters can be determined by maximum
ikelihood estimation.



MERITS OF ARIMA MODEL

Computational simple

Flexibility in modeling various tform of noises

Efficient in de-trending and whitening



PROOF-OF-CONCEPT

The simulated LIGO noise strain series with a constant 10 Hz sinusoidal signal
of h~1021injected.
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AUTOREGRESSIVE GW SEARCH
*ARIMA modeling
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ARIMA MO

Raw data

DELING O

- GW150914

Residuals



ARIMA MODELING OF GW150914

6.87e-22

-1.19e-21

Residuals (zoom-in)



-FFECTIV

NESS OF ARI

MA MOD

A diversity of noises are subsumed into ARIMA model
without any fine-tuning and a priori knowledge of the

noise nature

A desirable feature of this method is t
GW signals were NOT absorbed by A

ARIMA is a maximum likelihood estim

signal is a small fraction in a given win

nat the transient

RIMA model.

ation procedure

which weight all data points equally. As the transient

dow, their data

points are essentially ignored in the model.



A CONCERN IN OPTIMAL MODELING

Conventionally, ARIMA model is obtained by selecting the
orders of the model (i.e. p, g, d) based on certain information
criterion (e.g. AlC).

Although the optimal model resulted from this procedure can
minimize the noise, it might over-subtract the data, including
the potential signal (or part of the potential signal).
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Inspiral part of the signal i ,
cannot be retained




ARIMA VS SPECTRAL WHITENING

33.2% improve in SNR 31.5% improve in SNR
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WHITENING & LINE-REMOVAL BY ARIMA

Raw Data

ARIMA




CROSS-CORRELATION BETWEEN DATA
FROM DIFFERENT DETECTORS

ARIMA CCF

Signal from
GW150914 arrives

LIGO-L ~7.3 ms
earlier

I I
-0.2 -0.1




CROSS-CORRELATION BETWEEN DATA
FROM DIFFERENT DETECTORS




RECOVERING GWTC-1
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ON-GOING/FUTURE WORKS

1. Automatic search for the hyper-parameters

Since model selection based on information criterion
can lead to over-subtraction, we are investigating the
way to choose the order of the model.

In the moment, we limit the order of AR part (i.e. p) to
be 10% of the data length.

For g and d, the ranges are at the order of unity. In the
current stage, we set them manually. We are
investigating a more efficient way for obtaining the

optimal model.



ON-GOING/FUTURE WORKS

2. Anomaly Detections

After the noise subtraction, events candidates can be identified
as anomalies, which differ from normal instances significantly.

If the duration of the signal is significantly longer than the
sampling interval, a cluster of anomalies is expected.

Anomalies detected from different detectors (LIGO-H, LIGO-
L, KAGRA,VIRGO) can be cross-correlated and analysed with
clustering techniqgue.

The shortlisted anomalies can be taken as event candidates for
further analysis.



ON-GOING/FUTURE WORKS

2. Anomaly Detections




ON-GOING/FUTURE WORKS

2. Further work will be devoted to improve the performance of anomaly
detection with machine learning techniques (e.g. autoencoder).

Input Output

Normal Abnormal



ON-GOING/FUTURE WORKS

3. Template-free Parameter Estimation

Cleaned signal can be fitted with an 2nd stage AR model.
Signal can be reconstructed from the best-tit model.

Characteristic equation can be obtained from {aj} and the order D.
4

F(z)=1—2ajzj=0

J=1
QNM frequency/Damping can be obtained from the complex roots.

lfe — €Xp(12ﬂﬁ€At) R@(ﬁc) » Frequency
Im(fk) » Damping

It has been shown that this can extract the ring-down freq./damping timescale
from GW150914 (Shinkai 2018,2019).



2. IMPROVING DEEP LEARNING
CLASSIFICATION WITH GENERATIVE
ADVERSARIAL NETWORK (GAN)




GLITCHES

Understanding non-Gaussian transient noises (i.e.
glitches) is critical for detector characterization.

Because their high rate, they can mimic or obscure the
astrophysical signal and potentially leads to false
detection.

Separating these environmental/instrumental noises
from the astrophysical signal is an important issue.



GRAVITY SPY DATASET

Combination of crowd-sourcing with machine learning

in classitying transients recorded by the gravitational
wave detectors by using spectrograms.

Classes in the glitch datasets are firstly tagged by

citizen scientists, which provide seeds for machine
learning.

Trained classifier can sift more data and sent the
interesting/abnormal glitches back to citizen scientists.

Providing a test ground for classification algorithm.



GRAVITY SPY DATASE
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CLASSIFYING WITH LOGISTIC REGRESSION
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Class Name

10801ines
1488ripples
Air_compressor
Blip

Chirp
Extremely_loud
Helix

Koi fish

Light modulation
Low_frequency_burst
Low frequency lines
No glitch

Paired doves
Power linec
Repeating blips
Scattered light
Scratchy

Tomte

Violin_mode
Wandering_line
Whistle
None_of_the_ahave

Version 1.0
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Version 1.1

Blank (V1.1)
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> LEARNING IN
Y SPY DATA

Small sample

Imbalanced data



TACKLING WITH TRANSFER LEARNING

Using the large data set of
images with wide diversity,

e.g. ImageNet, to train the
network. Then moditying
the tinal layer based on the
number of required classes
and then fine-tuning the
parameters on the original
data

' Knowledge |

Transfer

.
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TACKLING WITH TRANSFER LEARNING
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POSSIBLE PROBLEM OF PRE-TRAINING WITH IMAGENET
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The underlying assumption of transfer-learning is that the pre-training
data set is sufficiently similar to the data in your problem.

However, there is a fundamental difference between normal images
and spectrograms. - Lack of symmetry



DATA AUGMENTATION

For images of galaxies, rotating

images should not affect its
classification (i.e. rotation
invariant).They are also scale,
reflectional and translational
Invariant.

All these invariances can be
exploited to data augmentation -
creating new training data by

perturbing existing data points.

The topological structures of the
perturbed images are consistent
with he original data.

The increased diversity can result in
less overfitting and better
generalization.




DATA AUGMENTATION

Ditterent from images,
each dimension of
J spectrogram
. represents different
quantities

Center Cropping Lack of symmetries

. Conventional data
» augmentation
algorithms for images
. J CANNOT be applied
to spectrogram

Rotation




GENERATIVE ADVERSARIAL NETWORK (GAN)

fraining _,ef

Random
noise ﬂ
I

Generator Fake image
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Random Input
Vector

.| Generator
Model

Generaled .
Real Example
Example

s

Discriminator |
Model

~. Discriminator

Updatle

model

Binary Classification | f
Real/Fake

Conceived by
Goodfellow in 2014.

GAN is built based on

game theory played
by two networks.

Generator and
Discriminator are put
together in a two-
player zero-sum game.



USE GAN IN COLOURISING B&W IMAGES
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PROGRESSIVE GENERATION OF SPECTROGRAM

Yan et al. submitted

Progressive growing of GAN (ProGAN) gradually grows

ayers with increasing resolution.



EXAMPLES OF GENERATED SPECTROGRAMS

an et al. submitted



MEASURING PERFORMANCE OF GAN

Real Images
A

Real Images train split Real Images test split

] I
{7 Training Training

Classifier

Evaluation Generation U Evaluation

Training

:> Classifier

Generated Images

GAN-test score
measures quality of

Images.

GAN-train score
measures diversity

ResNet50
(244x244)

ResNet101
(244x244)

Inception-V3
(299x299)

GoogLeNet
(244x244)

GAN-train
GAN-test

81.00(%)
97.57(%)

91.55(%)
97.18(%)

73.4((%)

single-duration spectrograms (1.0s) 01.83(%)
L0000

66.05(%)
98.68(%)

GAN-train
GAN-test

97.88(%)
99.31(%)

97.64(%)
99.35(%)

98.43(%)

multi-duration RGB spectrograms 95.87(%)

98.35(%)

99.73(%) Yan et al. submitted




MEASURING PERFORMANCE OF GAN

Visualizing the clustering properties in low-dimensional space by t-SNE.

1080Lines ® Realimages Repeating Blips ® Real images
1400Ripples A Generated images Scattered Light A Generated images

Air_Compressor Scratchy
Blip Tomte

Chirp " Violin_Maode

Extremely Loud N Wandering Line
Helix ' Whistle

Yan et al. submitted




RESOLVING THE IMBALANCE DATA PROBLEM

Algorithm 1: Data Augmentation Aleorithm

Input: the number of real images in one class. N,/
Qutput: the number of gencrated images in onc class,

/
A aug

Set the rotal number of images in one class, N, ;47 - 10 500,
1000, 2000, 3000 and 5000, respecrively:
For each class, :
if Ny.car < Nyoray then
Na ug = Nrotal = Nreai'
else
Ng ug — 0,
end )
Return the number of gencrated images, Ny, q!

Yan et al. submitted

70% ¢ 15%
L L

Training \Validation Testing Gravity Spy Dataset
l Input
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EXPERIMENTAL RESULTS

Precision * Recall

F1Score=2%

Precision + Recall
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Yan et al. submitted
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Experiment 1 | Experiment 2 | Experiment 3 | Experiment 4 | Experiment 5
Air Compressor ( 09412 1 1
PairedDoves | (0.6667 | 0.6667 0.666/ | 0.666/
Wandering Lines 08333 07273 071 43 09231
With Pre-train Niotar = 0

Experiment 1

Experiment 2

Experiment 3

Experiment 4

Experiment 5

Air Compressor

Paired Doves

0.9412

Wandering Lines

0.9231

Without Pre-train N, = 5000

Experiment 1

Experiment 2

Experiment 3
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Yan et al. submitted




EXPERIMENTAL RESULTS vanetal submitted
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ERITS OF GAN IN GW ASTRONOMY

Provide a framework for data augmentation

Enable an alternative means for employing deep

learning without pre-training.

Improve the classification performance particularly tor
the classes with small samples.



FUTURE PLAN - GW FROM CCSN

Detection ot GW from core-collapsed SNe will be the
next milestone.

) Neutrino-driven, ii) Magnetorotational mechanism

Majority of observed CCSNe can be explained by
neutrino-driven mechanism

This can cause convection and standing accretion
shock instability (SASI)



NEUTRINO-DRIVEN CCSN
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Simulation Courtesy: Kuo-Chuan Pan (NTHU)



GW FROM COR
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GW FROM COR
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CHALLENGE IN SEARCHING GW FROM
CCSN

Since the GW signal produced by CCSNe is affected by
turbulence, it is expected to be stochastic in nature.

The signal evolution cannot be deterministically predicted.

This prevents matched filtering from being applied to
CCSNe.

Deep learning techniques have been explored to detected
and classify the possible GW signals from CCSNe.



SEARCH GW FROM CCSN
BY DEEP LEARNING

Mecchanism Mass (M)
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‘Mass of a star in a binary system with an initial helium mass
of 3.5 M

Chan, Heng & Messenger (2020)



SEARCH GW FROM CCSN
BY DEEP LEARNING

True alarm rates < 66% are obtained from this experiment
(depends on distance & waveform)
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IMPROVE THE PERFORMANCE WITH GAN

The trained network can perform better when presented

with waveforms of unexpected features, which is more likely
in reality.

This can be achieved by training with a sample of larger
diversity.

GAN has the potential to enhance the detectability of
CCSN GW signal by deep learning, altogether with relieving
the problems of small and imbalanced training sample.



SUMMARY

We have been searching the novel methods for improving the GW
signal processing.

ARIMA model provides an efticient and flexible way to denoise the
data, while retaining the physically interesting signal.

GAN can enhance the deep learning performance by uplifting the
problems of small and imbalanced training sample. Also, it can
improve the generalization by providing the data with larger diversity

In our future projects, these methods can be combined in searching

for GW signals from various sources (e.g. continuous wave from NS,
bursts fromm CCSNe).
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