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O U T L I N E

• Development of GW astronomy 

• Autoregressive Approach in GW detection 

• Improving deep learning classification of GW 
spectrograms with GAN



E X I S T E N C E  O F  G W

• In a limit of small disturbance from a flat spacetime, 
Einstein field equation reduces to a linear wave 
equation. 

• Implication on the disturbance can be seen from the 
constant appears in Einstein field equation.

Gμν =
8πG
c4

Tμν

gμν = ημν + hμν

∂2hμν

∂xα∂xα
= 0

(hμν ≪ 1)



“ S T I F F N E S S ”  O F  S PA C E T I M E

• The amplitude of GW is hence very small. 

• GW sources must involve huge masses and/or catastrophic events. 

• Despite the small amplitude, a large amount of energy can be 
carried by GW.

c4

8πG

Require a stress of 
                   to give a 
curvature of

∼ 1043 Nm−2

∼ 1m−2



T W O  P O L A R I Z AT I O N  S TAT E S
• Passage of GW can be revealed by investigating the motion of 

test masses lying in its path of propagation 

• Interferometry is most suitable for detecting GW

h× h+





F I R S T  B L A C K  H O L E  M E R G E R  -  G W 1 5 0 9 1 4

On September 14, 2015, LIGO observed gravitational waves from the 
merger of two black holes, each about 30 times the mass of our sun. 
The powerful event releases                      within a fraction of a second.  ∼ 3M⊙c2



90 GW events have been detected so far in GWTC-3



P R O G R E S S  O F  G W  A S T R O N O M Y  

• Increasing the number of observatories 

• Installation of space-based/Galaxy-based 
observatories 

• Improving the sensitivity 

• Improving the performance in signal processing



• More precise source localization 

• More certain parameter estimation 

• Lower false alarm rate 

• More information of polarization

I N T E R N AT I O N A L  G W  N E T W O R K



I N T E R N AT I O N A L  G W  N E T W O R K





S PA C E / G A L A X Y  B A S E D  O B S E R VAT O R I E S



S E N S I T I V I T Y  C U R V E

Abramovici et al. 1992 Science 256 325



K A G R A
Underground Cryogenic Fabry-Perot Interferometer



Installation of the 1st cryogenic mirror (2017 Nov 30)



V I B R AT I O N  I S O L AT I O N  S Y S T E M S +  C Y R O S TAT

Yamada et al. 2020 J.Phy. Conf Ser. I468 012217



V I B R AT I O N  I S O L AT I O N  S Y S T E M S +  C Y R O S TAT

Cyrostat cools the test mass 
(Sapphire mirror) to ~20 K



• Assume the data stream is                                   where         is the 
signal and         is the wide-sense stationary noise, s.t. 

• With the stationarity assumption, we can take                  

•  Autocorrelation of noise: 

• Fourier transform of               give power spectral density of noise:  

• Consider an arbitrary filter       , s.t.   

T H E O R Y  O F  M AT C H E D  F I LT E R I N G

n(t)
h(t)x(t) = h(t) + n(t)

⟨n(t)⟩ = ⟨n(t + τ)⟩ ⟨n(t)n(t′�)⟩ = ⟨n(t + τ)n(t′� + τ)⟩ ∀τ
⟨n(t)⟩ = 0

⟨n(t)n(t′�)⟩ = K(t − t′�)

⟨n( f )n*( f′�)⟩ = Sn( f )δ( f − f′�)
K(t − t′�)

F(t)

c = ∫
∞

−∞
F(t)x(t)dt = ∫

∞

−∞
F*( f )x( f )df c ∈ ℝ



• Define signal-to-noise ratio (SNR):

μc = ⟨c⟩ = ⟨∫
∞

−∞
F*( f )x( f )df ⟩ = ∫

∞

−∞
F*( f )h( f )df (By zero-mean 

stationary noise)

σ2
c = ∫

∞

−∞ ∫
∞

−∞
F*( f )F*( f′�)⟨n( f )n( f′�)⟩dfdf′�

= ∫
∞

−∞ ∫
∞

−∞
F*( f )F*( f′�)⟨n( f )n(−f′�)⟩dfdf′�

= ∫
∞

−∞ ∫
∞

−∞
F*( f )F*( f′�)⟨n( f )n*( f′�)⟩dfdf′�

= ∫
∞

−∞ ∫
∞

−∞
F*( f )F*( f′�)Sn( f )δ( f − f′�)dfdf′� = ∫

∞

−∞
∥F*( f )∥2Sn( f )df

ρ(F) =
μc(F)
σc(F)

T H E O R Y  O F  M AT C H E D  F I LT E R I N G



ρ(F) =
∫ ∞

−∞
F*( f )h( f )df

∫ ∞
−∞

∥F*( f )∥2Sn( f )df
=

∫ ∞
−∞

F*( f ) Sn( f ) h( f )

Sn( f )
df

∫ ∞
−∞

∥F*( f )∥2Sn( f )df

By Cauchy-Schwarz inequality: ∫
∞

−∞
F*( f ) Sn( f )

h( f )
Sn( f )

df ≤ ∫
∞

−∞
∥F*( f )∥2Sn( f )df ∫

∞

−∞

∥h( f )∥2

Sn( f )
df

ρ(F) ≤
∫ ∞

−∞
∥F*( f )∥2Sn( f )df ∫ ∞

−∞
∥h( f )∥2

Sn( f ) df

∫ ∞
−∞

∥F*( f )∥2Sn( f )df

1/2

≤ [∫
∞

−∞

∥h( f )∥2

Sn( f )
df]

1/2

Assuming white noise Sn( f ) = constant

F*( f ) =
h( f )
Sn( f ) is optimalMatched Filter

T H E O R Y  O F  M AT C H E D  F I LT E R I N G



M AT C H E D  F I LT E R I N G

• Matched filtering is an established way for detecting GW signal. 
Matched filter can be obtain by correlating a template        (with 
known form) with an unknown time series to detect the presence 
of the template in the signal.

A signal at 1126259462.42s with SNR 19.1247029698 is found.

h(t)



The template bank used 
in O1 covers a 4D 
parameter space. 

Assume the binaries are 
circular with the BH spins 
aligned/anti-aligned with 
the orbital angular 
momentum. 

~250000 template are 
generated for the search. 

Abbott et al. (2016)

M AT C H E D  F I LT E R



S H O R T C O M I N G S  O F  M AT C H E D  F I LT E R I N G

• Require an exact form to be known in advance 

• Computationally expensive 

• Assumptions for its optimal performance might not be 
fulfilled (i.e. stationary, zero-mean, white noise) 

• Do not enable direction visualization of the waveform 
from the data



1 .  A U T O R E G R E S S I V E   
    M O D E L I N G



I M P R O V E  N O I S E  R E D U C T I O N

• Enable us to… 

1. Search for fainter sources (e.g. continuous wave, CCSNe) 

2. More accurate parameter estimation (including 
localization) 

3. Test GR at the limit of strong field



N O I S E  R E D U C T I O N  W I T H  S T O C H A S T I C  
A U T O R E G R E S S I V E  M O D E L I N G  

• Computationally simple 

• Capable to handle various kinds of noise from non-
stationary autocorrelated stochastic processes. 

• Many applications in diverse fields (e.g. ECG, 
econometrics), but not many in astronomy until 
recently  (e.g. exoplanet search, Caceres et al. 2019)



A U T O R E G R E S S I V E  P L A N E T  S E A R C H

Caceres et al. 2019



A U T O R E G R E S S I V E  P L A N E T  S E A R C H

Caceres et al. 2019



A U T O R E G R E S S I V E  P L A N E T  S E A R C H

Caceres et al. 2019



Combining the autoregressive (AR), moving average 
(MA) and integrated (I) processes together into a single 
regression procedure, we have ARIMA(p,q,d) model: 

The model parameters can be determined by maximum 
likelihood estimation.

A U T O R E G R E S S I V E  I N T E G R AT E D  
M O V I N G  AV E R A G E  ( A R I M A )  M O D E L

(1 − B)dxt =
p

∑
i=1

aixt−i +
q

∑
j=1

bjϵt−j + ϵt + c



M E R I T S  O F  A R I M A  M O D E L

• Computational simple 

• Flexibility in modeling various form of noises 

• Efficient in de-trending and whitening



P R O O F - O F - C O N C E P T
• The simulated LIGO noise strain series with a constant 10 Hz sinusoidal signal 

of h~10-21 injected. 

strain series with a constant 10 Hz CW of h~10-21 injected. 

•



A U T O R E G R E S S I V E  G W  S E A R C H



A R I M A  M O D E L I N G  O F  G W 1 5 0 9 1 4

Raw data Residuals



Residuals (zoom-in)

A R I M A  M O D E L I N G  O F  G W 1 5 0 9 1 4



E F F E C T I V E N E S S  O F  A R I M A  M O D E L

• A diversity of noises are subsumed into ARIMA model 
without any fine-tuning and a priori knowledge of the 
noise nature 

• A desirable feature of this method is that the transient 
GW signals were NOT absorbed by ARIMA model.  

• ARIMA is a maximum likelihood estimation procedure 
which weight all data points equally. As the transient 
signal is a small fraction in a given window, their data 
points are essentially ignored in the model.



A  C O N C E R N  I N  O P T I M A L  M O D E L I N G

• Conventionally, ARIMA model is obtained by selecting the 
orders of the model (i.e. p, q, d) based on certain information 
criterion (e.g. AIC).  

• Although the optimal model resulted from this procedure can 
minimize the noise, it might over-subtract the data, including 
the potential signal (or part of the potential signal).

Inspiral part of the signal 
cannot be retained



A R I M A  V S  S P E C T R A L  W H I T E N I N G

ARIMA ARIMA

Spectral 
Whitening

Spectral 
Whitening

31.5% improve in SNR33.2% improve in SNR



W H I T E N I N G  &  L I N E - R E M O VA L  B Y  A R I M A

Raw Data

ARIMA



C R O S S - C O R R E L AT I O N  B E T W E E N  D ATA  
F R O M  D I F F E R E N T  D E T E C T O R S

Signal from 
GW150914 arrives 
LIGO-L ~7.3 ms 
earlier



C R O S S - C O R R E L AT I O N  B E T W E E N  D ATA  
F R O M  D I F F E R E N T  D E T E C T O R S



R E C O V E R I N G  G W T C - 1

GW150914 GW151012 

GW170814 GW170817 



GW150914

1. Automatic search for the hyper-parameters

• Since model selection based on information criterion 
can lead to over-subtraction, we are investigating the 
way to choose the order of the model. 

• In the moment, we limit the order of AR part (i.e. p) to 
be 10% of the data length.  

• For q and d, the ranges are at the order of unity. In the 
current stage, we set them manually. We are 
investigating a more efficient way for obtaining the 
optimal model.

O N - G O I N G / F U T U R E  W O R K S



GW150914

2. Anomaly Detections

• After the noise subtraction, events candidates can be identified 
as anomalies, which differ from normal instances significantly. 

• If the duration of the signal is significantly longer than the 
sampling interval, a cluster of anomalies is expected. 

• Anomalies detected from different detectors (LIGO-H, LIGO-
L,KAGRA,VIRGO) can be cross-correlated and analysed with 
clustering technique. 

• The shortlisted anomalies can be taken as event candidates for 
further analysis.

O N - G O I N G / F U T U R E  W O R K S



2. Anomaly Detections

O N - G O I N G / F U T U R E  W O R K S



2. Further work will be devoted to improve the performance of anomaly 
detection with machine learning techniques (e.g. autoencoder).

Input Output

AbnormalNormal

O N - G O I N G / F U T U R E  W O R K S



3. Template-free Parameter Estimation

• Cleaned signal can be fitted with an 2nd stage AR model. 

• Signal can be reconstructed from the best-fit model.  

• Characteristic equation can be obtained from          and the order    .  

•              

• QNM frequency/Damping can be obtained from the complex roots.                     

{aj} p

F(z) = 1 −
p

∑
j=1

ajzj = 0

zk = exp(i2πfkΔt) Re( fk)
Im( fk)

Frequency

Damping

It has been shown that this can extract the ring-down freq./damping timescale 
from GW150914 (Shinkai 2018,2019).

O N - G O I N G / F U T U R E  W O R K S



2 .  I M P R O V I N G  D E E P  L E A R N I N G  
C L A S S I F I C AT I O N  W I T H  G E N E R AT I V E  
A D V E R S A R I A L  N E T W O R K   ( G A N )



G L I T C H E S

• Understanding non-Gaussian transient noises (i.e. 
glitches) is critical for detector characterization. 

• Because their high rate, they can mimic or obscure the 
astrophysical signal and potentially leads to false 
detection. 

• Separating these environmental/instrumental noises 
from the astrophysical signal is an important issue.



G R AV I T Y  S P Y  D ATA S E T

• Combination of crowd-sourcing with machine learning 
in classifying transients recorded by the gravitational 
wave detectors by using spectrograms. 

• Classes in the glitch datasets are firstly tagged by 
citizen scientists, which provide seeds for machine 
learning.  

• Trained classifier can sift more data and sent the 
interesting/abnormal glitches back to citizen scientists. 

• Providing a test ground for classification algorithm.



G R AV I T Y  S P Y  D ATA S E T



G R AV I T Y  S P Y  A S  C I T I Z E N  S C I E N C E

https://www.zooniverse.org/projects/zooniverse/gravity-spy/classify



C L A S S I F Y I N G  W I T H  L O G I S T I C  R E G R E S S I O N

Bahaadini et al. (2018)



C H A L L E N G E  O F  D E E P  L E A R N I N G  I N  
C L A S S I F Y I N G  G R AV I T Y  S P Y  D ATA

1. Small sample 

2. Imbalanced data



TA C K L I N G  W I T H  T R A N S F E R  L E A R N I N G

• Using the large data set of 
images with wide diversity, 
e.g. ImageNet, to train the 
network. Then modifying 
the final layer based on the 
number of required classes 
and then fine-tuning the 
parameters on the original 
data



TA C K L I N G  W I T H  T R A N S F E R  L E A R N I N G

George et al. (2018)



P O S S I B L E  P R O B L E M  O F  P R E - T R A I N I N G  W I T H  I M A G E N E T

?

• The underlying assumption of transfer-learning is that the pre-training 
data set is sufficiently similar to the data in your problem. 

• However, there is a fundamental difference between normal images 
and spectrograms. - Lack of symmetry



D ATA  A U G M E N TAT I O N
• For images of galaxies, rotating 

images should not affect its 
classification (i.e. rotation 
invariant).They are also scale, 
reflectional and translational 
invariant. 

• All these invariances can be 
exploited to data augmentation - 
creating new training data by 
perturbing existing data points. 

• The topological structures of the 
perturbed images are consistent 
with he original data. 

• The increased diversity can result in 
less overfitting and better 
generalization.

(Dieleman+ 2015)



• Different from images, 
each dimension of 
spectrogram 
represents different 
quantities 

• Lack of symmetries 

• Conventional data 
augmentation 
algorithms for images 
CANNOT be applied 
to spectrogram

D ATA  A U G M E N TAT I O N



G E N E R AT I V E  A D V E R S A R I A L  N E T W O R K  ( G A N )

• Conceived by 
Goodfellow in 2014. 

• GAN is built based on 
game theory played 
by two networks. 

• Generator and 
Discriminator are put 
together in a two-
player zero-sum game.



U S E  G A N  I N  C O L O U R I S I N G  B & W  I M A G E S

Image Courtesy: DeOldify



P R O G R E S S I V E  G E N E R AT I O N  O F  S P E C T R O G R A M

• Progressive growing of GAN (ProGAN) gradually grows 
layers with increasing resolution.

Yan et al. submitted



E X A M P L E S  O F  G E N E R AT E D  S P E C T R O G R A M S

Yan et al. submitted



M E A S U R I N G  P E R F O R M A N C E  O F  G A N

• GAN-test score 
measures quality of 
images. 

• GAN-train score 
measures diversity

Yan et al. submitted



M E A S U R I N G  P E R F O R M A N C E  O F  G A N

Yan et al. submitted

Visualizing the clustering properties in low-dimensional space by t-SNE. 



R E S O LV I N G  T H E  I M B A L A N C E  D ATA  P R O B L E M

Yan et al. submitted



E X P E R I M E N TA L  R E S U LT S

Yan et al. submitted



E X P E R I M E N TA L  R E S U LT S

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

Air Compressor 1 0.9412 1 1 1
Paired Doves 0.6667 0.6667 1 0.6667 0.6667

Wandering Lines 0.8333 0.7273 1 0.7143 0.9231

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5

Air Compressor 1 1 1 1 0.9412
Paired Doves 1 1 1 1 1

Wandering Lines 1 1 1 0.9231 1

Experiment 1 Experiment 2 Experiment 3 Experiment 4 Experiment 5
Air Compressor 1 0.9412 0.9412 0.9412 0.9412
Paired Doves 1 1 1 1 1

Wandering Lines 1 1 1 1 0.9333

Without Pre-train

With Pre-train

Ntotal = 0

Without Pre-train

Ntotal = 0

Ntotal = 5000

Yan et al. submitted



E X P E R I M E N TA L  R E S U LT S

• Achieve perfect precision and recall on 7 classes.

Yan et al. submitted

Ntotal = 2000Without Pre-train



1. Provide a framework for data augmentation 

2. Enable an alternative means for employing deep 
learning without pre-training.  

3. Improve the classification performance particularly for 
the classes with small samples. 

M E R I T S  O F  G A N  I N  G W  A S T R O N O M Y



F U T U R E  P L A N  -  G W  F R O M  C C S N

• Detection of GW from core-collapsed SNe will be the 
next milestone. 

• i) Neutrino-driven, ii) Magnetorotational mechanism 

• Majority of observed CCSNe can be explained by 
neutrino-driven mechanism 

• This can cause convection and standing accretion 
shock instability (SASI)



N E U T R I N O - D R I V E N  C C S N

Simulation Courtesy: Kuo-Chuan Pan (NTHU)



G W  F R O M  C O R E - C O L L A P S E D  S N



G W  F R O M  C O R E - C O L L A P S E D  S N



C H A L L E N G E  I N  S E A R C H I N G  G W  F R O M  
C C S N  

• Since the GW signal produced by CCSNe is affected by 
turbulence, it is expected to be stochastic in nature. 

• The signal evolution cannot be deterministically predicted. 

• This prevents matched filtering from being applied to 
CCSNe. 

• Deep learning techniques have been explored to detected 
and classify the possible GW signals from CCSNe. 



S E A R C H  G W  F R O M  C C S N   
B Y  D E E P  L E A R N I N G

However, the training 
sample (simulated) is 
limited, unbalanced 
and can’t cover a wide 
parameter space.

Chan, Heng & Messenger (2020)



S E A R C H  G W  F R O M  C C S N   
B Y  D E E P  L E A R N I N G

Chan, Heng & Messenger (2020)

True alarm rates < 66% are obtained from this experiment  
(depends on distance & waveform)



I M P R O V E  T H E  P E R F O R M A N C E  W I T H  G A N

• The trained network can perform better when presented 
with waveforms of unexpected features, which is more likely 
in reality.  

• This can be achieved by training with a sample of larger 
diversity.  

• GAN has the potential to enhance the detectability of 
CCSN GW signal by deep learning, altogether with relieving 
the problems of small and imbalanced training sample.



S U M M A R Y

• We have been searching the novel methods for improving the GW 
signal processing. 

• ARIMA model provides an efficient and flexible way to denoise the 
data, while retaining the physically interesting signal. 

• GAN can enhance the deep learning performance by uplifting the 
problems of small and imbalanced training sample. Also, it can 
improve the generalization by providing the data with larger diversity 

• In our future projects, these methods can be combined in searching 
for GW signals from various sources (e.g. continuous wave from NS, 
bursts from CCSNe).



T H A N K  Y O U  V E R Y  M U C H


