LIGO-Virgo-KAGRA detector and current status of gravitational wave detector

technologies

June Gyu Park

Contents

force Astronomy & pase Server Institute

1. Gravitational wave detector and status of LVK

2. Quantum noise of gravitational wave detector

3. Squeezed vacuum injection

Gravitational wave detector and status of LVK

Miller, M.C., Yunes, N. The new frontier of gravitational waves. *Nature* 568, 469–476 (2019)

Gravitational wave

MPA Lectures on Gravitational Waves in Cosmology Azadeh Maleknejad Max-Planck-Institute for Astrophysics

https://www.ligo.caltech.edu/

https://www.ligo.caltech.edu/

Sensitivity of michelson interferometer

Danilishin, Stefan L. et al. Living Rev.Rel. 15 (2012) 5 arXiv:1203.1706

Interferometer of GW detector

Strain sensitivity

Interferometer of GW detector

IFI : Input faraday isolatorPRM : Power recycling mirrorITM : Input test massETM : End test massMMT : Mode matching telescopeSRM : Signal recycling mirror

PSL room

JGW-G1808402-v6

PSL room

JGW-G1808402-v6

Coherence

Coherence

Linewidth of laser

<u>Transmitter and Receiver Design for Amplified Lightwave Systems</u> Daniel A. Fishman, B. Scott Jackson, in <u>Optical Fiber Telecommunications (Third Edition)</u>, <u>Volume B</u>, 1997

PSL room

Reference Cavity

Status: Installed and automated in air Details:

- A very stable cavity for the frequency reference using the ultra-low expansion (ULE) glass spacer
- Requrement < 100mHz/sec
- Vacuum chamber had a leak; preparing for the repair
- Spacer length 100.71mm (catalog)
- Finesse 30000 (PhD thesis, Nakano)
- Controls: laser thermal, laser PZT, BB EOM
- UGF ~ 500 kHz
- . To be characterized again

JGW-G1808402-v6

Interferometer of GW detector

IFI : Input faraday isolatorPRM : Power recycling mirrorITM : Input test massETM : End test massMMT : Mode matching telescopeSRM : Signal recycling mirror

Spatial mode of gaussian beam

Gaussian beam

https://www.edmundoptics.co.kr/knowledge-

center/application-notes/lasers/gaussian-beam-propagation/

Gaussian beam

Gaussian beam

Gaussian beam mode matching

Interferometer of GW detector

IFI : Input faraday isolatorPRM : Power recycling mirrorITM : Input test massETM : End test massMMT : Mode matching telescopeSRM : Signal recycling mirror

Gaussian beam mode matching

Interferometer of GW detector

IFI : Input faraday isolatorPRM : Power recycling mirrorITM : Input test massETM : End test massMMT : Mode matching telescopeSRM : Signal recycling mirror

KAGRA chamber

https://authors.library.caltech.edu/94680/2/1901.03053.pdf

Mirror of IMC

Wavefront sensor MCE_TRANS

Figure 2. Overview of the arm length stabilization system of KAGRA. The frequencies of the two auxiliary lasers are phase-locked to that of PSL. The frequency of the each green laser is controlled by the combination of a double-path acousto-optic

rea Astronomy and ace Science Institute

Vibration isolation system of KAGRA

Cryogenic system of KAGRA

Cryogenic system of KAGRA

Class. Quant. Grav. 36 (2019) 165008

Cryogenic system of KAGRA

T. Akutsu et al. PTEP 2020, 05A101

• Test mass chamber

Rey.Hori

Power and Signal recycling mirror

Y. Aso et al. (KAGRA Collaboration), Phys. Rev. D88, 043007 (2013)

MC : Mode Cleaner ITMX : Input Test Mass X ITMY : Input Test Mass Y REFL : Reflection Port PRM : Power Recycling Mirror OMC : Output Mode Cleaner AS_DC : Anti Symmetric DC SRM : Signal Recycling Mirror POP : Pick-off-in-the-PRC ETMX : End Test Mass X ETMY : End Test Mass Y AS RF : Anti Symmetric RF

Power and Signal-RECYCLED INTERFEROMETER

Power and Signal recycling mirror

Y. Aso et al. (KAGRA Collaboration), Phys.Rev. D88, 043007 (2013)

Power and Signal-RECYCLED INTERFEROMETER

Power and Signal recycling mirror

Y. Aso et al. (KAGRA Collaboration), Phys. Rev. D88, 043007 (2013)

MC : Mode Cleaner ITMX : Input Test Mass X ITMY : Input Test Mass Y REFL : Reflection Port PRM : Power Recycling Mirror OMC : Output Mode Cleaner AS_DC : Anti Symmetric DC SRM : Signal Recycling Mirror POP : Pick-off-in-the-PRC ETMX : End Test Mass X ETMY : End Test Mass Y AS RF : Anti Symmetric RF

LIGO status

A+ Upgrade: Toward O4

- □ Target: 190 Mpc BNS range
 - Improved Faraday isolators (UF/Montclair)
 - Adaptive wavefront control (LIGO/Adelaide/Syracuse)
 - High-dynamic-range photodetectors (LIGO/Cardiff)
 - Frequency-dependent squeezing
 - Upgraded squeezer & dark port
 - New end station labs & filter cavity tube enclosure buildings
 - New vacuum chambers & filter cavity beamtubes
 - [+ concurrent detector improvements, not A+: high laser power, point-defect-free TM's, scattered light control, ...]

LIGO Laboratory

A+ Upgrade: Toward O5

- A+ O5 Target: 325 Mpc BNS range
- Low-CTN coatings

LIGO

LIGO-G2200382-v1

- A+ and AdV+ will pursueTi:GeO₂ material for O5; LIGO has procured required deposition targets
 - LIGO/Virgo joint working group appointed to guide full-aperture development & QA
 - Bubble formation risk during annealing is not yet resolved; R&D is underway
- A+ substrates all in hand, now polishing (UK/Glasgow + US)
- Coating production readiness review planned for end of calendar '22
- Large-aperture beamsplitter and relay triple suspension designs complete, fabrication reviews imminent (UK/RAL)
- Balanced Homodyne Readout (BHR) in final design, FDR pending (UK/Glasgow & Cardiff)
 - O5 start paced by post-O4 A+ installation
 - Estimated ~11 months after post-run cal, not including commissioning

BHR raytrace in HAM6, G2101467 (Glasgow)

BBSS Final Design, T2000503 (RAL)

LIGO Laboratory

KAGRA status

Fundamental noises in O4

4

- Observation range limit: 6Mpc
- Target: 1Mpc

- Laser power at BS: 58W
- PRFPMI
- Observation range limit: 35Mpc
- Target: 10Mpc

Noise budget at O3GK

- Noise sources limiting the sensitivity at O3GK were well identified.
 - The noise budget paper has just been submitted to the archive.
- Low frequency (< 100Hz): Suspension control noise.
- Mid-frequency (100Hz-400Hz): Scattering light noise excited by acoustic noise.
- High frequency (400Hz<): Shot noise, optical loss between BS and AS detection port (70% reflection SRM and so on).

Advanced Virgo+ design sensitivity

- Phase I: reduce quantum noise, hit against thermal noise. BNS range: 100 Mpc's
- Phase II: lower the thermal noise wall. BNS range: 200 Mpc's or more

Advanced Virgo+ Phase II

Advanced Virgo

Quantum noise reduction system (QNR)

Goal: use frequency dependent squeezing in AdV+ Phase I

System design compatible with FIS as well

Advanced Virgo+ Phase I

nced Virao +

LIGO status

Updated 16 June 2022	— 01	— 02	— O3	— O4	O 5
LIGO	80 Mpc	100 Мрс	100-140 Мрс	160-190 Mpc	240-325 Mpc
Virgo		30 Mpc	40-50 Мрс	80-115 Mpc	150-260 Mpc
KAGRA			0.7 Mpc	(1-3) ~ 10 Mpc	25-128 Mpc
G2002127-v12 20	 015 2016	1 2017 2018 2	2019 2020 2021	 2022 2023 2024 2025 2	1 1 1 2026 2027 2028

Quantum noise of gravitational wave detector

Quantum noise of coherent light

Heurs M. 2018 Gravitational wave detection using laser interferometry beyond the standard quantum limit.Phil. Trans. R. Soc. A 376: 20170289.

Phase and amplitude noise of light

He urs M. 2018 Gravitational wave detection using laser interferometry beyond the standard quantum limit.Phil. Trans. R. Soc. A 376: 20170289.

Classical electromagnetic wave

Photo dioe current (I) \propto Intensity \propto (Number of photon)

Photo dioe current (I) \propto Intensity \propto (Number of photon)

Figure 2-3: Balanced homodyne readout.

Quantum noise of coherent light

Heurs M. 2018 Gravitational wave detection using laser interferometry beyond the standard quantum limit.Phil. Trans. R. Soc. A 376: 20170289.

Standard quantum limit of GW detector

Standard quantum limit of gravitational wave detector Shot noise + Radiation pressure noise

Quantum noise of interferometer

•Quantum noise of interferometer

Assume anti-symmetric port is dark port

$$E_1(t) = \frac{1}{\sqrt{2}} [E_s(t) + E_{as}(t)]$$
$$E_2(t) = \frac{1}{\sqrt{2}} [E_s(t) - E_{as}(t)]$$

'as' is vacuum field

Squeezed States for Advanced Gravitational Wave Detectors, B.A., University of California Berkeley, Eric Oelker (2009)

Quantum noise of coherent light

Heurs M. 2018 Gravitational wave detection using laser interferometry beyond the standard quantum limit.Phil. Trans. R. Soc. A 376: 20170289.

Photon Counting Statistics

Target sensitivity of KAGRA

Target sensitivity of KAGRA

Shot noise curve of GW detector

Interaction length ~ Number of round trip x Length

Radiation pressure noise

- Stored energy is very high (750 kW)
- Desired sensitivity is very high ($10^{-21} \sim 10^{-24}$)

• Test mass of KAGRA

Radiation pressure noise

$$E_{as,r}(t) = E_{as} + E_0 \frac{\omega_0 [x_2(t) - x_1(t)]}{c} \sin(\omega_0 t)$$

$$t) - x_2(t) = \frac{x_{cl,1}(t) - x_{cl,2}(t) + \delta \hat{x}_1(t) - \delta \hat{x}_2(t) + Lh(t)}{\text{Thermal, seismic}}$$
Radiation pressure GW source (slow)

Design sensitivity of KAGRA

Squeezed vacuum injection in GW detector

•Quantum noise of interferometer

Assume anti-symmetric port is dark port

$$E_1(t) = \frac{1}{\sqrt{2}} [E_s(t) + E_{as}(t)]$$
$$E_2(t) = \frac{1}{\sqrt{2}} [E_s(t) - E_{as}(t)]$$

'as' is vacuum field

Squeezed States for Advanced Gravitational Wave Detectors, B.A., University of California Berkeley, Eric Oelker (2009)

Phase and amplitude noise of light

Heurs M. 2018 Gravitational wave detection using laser interferometry beyond the standard quantum limit.Phil. Trans. R. Soc. A 376: 20170289.

Non-linear crystal

Parametric down conversion

Parametric down conversion process

Parametric down conversion

Parametric down conversion process

Squeezed vacuum

Figure 1.6: Simulation of electric field in time for (a) vacuum state and for (b) squeezed vacuum.

Phase and amplitude noise of light

Heurs M. 2018 Gravitational wave detection using laser interferometry beyond the standard quantum limit.Phil. Trans. R. Soc. A 376: 20170289.

Squeezed state of light

R. Schnabel / Physics Reports 684 (2017) 1-51

Frequency independent squeezing

Optical and noise studies for Advanced Virgo and filter cavities for quantum noise reduction in gravitational-wave interferometric detectors, Eleonora Capocasa, UNIVERSITÉ PARIS DIDEROT (2017)

Frequency independent squeezing

Optical and noise studies for Advanced Virgo and filter cavities for quantum noise reduction in gravitational-wave interferometric detectors, Eleonora Capocasa, UNIVERSITÉ PARIS DIDEROT (2017)

Frequency independent squeezing

Optical and noise studies for Advanced Virgo and filter cavities for quantum noise reduction in gravitational-wave interferometric detectors, Eleonora Capocasa, UNIVERSITÉ PARIS DIDEROT (2017)

Frequency dependent squeezing(FDS)

Optical and noise studies for Advanced Virgo and filter cavities for quantum noise reduction in gravitational-wave interferometric detectors, Eleonora Capocasa, UNIVERSITÉ PARIS DIDEROT (2017)

4. Frequency dependent squeezing in GW detector

First suggestion of filter cavity in FD squeezing

Conversion of conventional gravitational-wave interferometers into quantum nondemolition interferometers by modifying their input and/or output optics

H. J. Kimble,¹ Yuri Levin,^{2,*} Andrey B. Matsko,³ Kip S. Thorne,² and Sergey P. Vyatchanin⁴ ¹Norman Bridge Laboratory of Physics 12-33, California Institute of Technology, Pasadena, California 91125 ²Theoretical Astrophysics, California Institute of Technology, Pasadena, California 91125 ³Department of Physics, Texas A&M University, College Station, Texas 77843-4242 ⁴Physics Faculty, Moscow State University, Moscow, 119899, Russia

FIG. 1. Schematic diagram of a squeezed-input interferometer.

Squeezed vacuum injection with filter cavity

Side band figure

Detuned cavity

Stefan Hild et al, "Detuned arm cavities", 3rd GEO simulation workshop, Hannover, June 2007

<u>B:</u>

less carrier light in cavity => less GW sidebands are produced.
Since one GW sideband is resonant, it gets enhanced.

Simple picture

=> Smaller GW signal

<u>C:</u>

optical power is restored in the cavity by larger PR-gain.
Same amount of GW sidebands are produced.
Since one GW sideband is

resonant, it gets enhanced. Overall we win GW signal.

=> Larger GW signal

brea Astronomy and

3rd GEO simulation workshop, Hannover, June 2007 pace Science Institute

Gravitational wave signal

Electric field in simple Michelson interferometer

Assume anti-symmetric port is dark port

$$E_1(t) = \frac{1}{\sqrt{2}} [E_s(t) + E_{as}(t)]$$
$$E_2(t) = \frac{1}{\sqrt{2}} [E_s(t) - E_{as}(t)]$$

'as' is vacuum field

Squeezed States for Advanced Gravitational Wave Detectors, B.A., University of California Berkeley, Eric Oelker (2009)

Optical parametric oscillator

All-Optical Electron Acceleration with Ultrafast THz Pulses, Wenqian Ronny Huang, MIT(2017)

Filter cavity

Denis Martynov et al, Phys. Rev. D **99**, 102004

°ω

Detuned filter cavity

P. Kwee, J. Miller, T. Isogai, L. Barsotti, and M. Evans Phys. Rev. D 90, 062006 – Published 5 September 2014

M. Evans, L. Barsotti, P. Kwee, J. Harms, and H. Miao Phys. Rev. D **88**, 022002 – Published 29 July 2013

UNIVERSITÉ PARIS DIDEROT, Eleonora Capocasa (2017)

UNIVERSITÉ PARIS DIDEROT, Eleonora Capocasa (2017)

UNIVERSITÉ PARIS DIDEROT, Eleonora Capocasa (2017)

Capocasa (2017)

$$\alpha_p = \arctan\left(\frac{2\gamma_{\rm fc}\Delta\omega_{\rm fc}}{\gamma_{\rm fc}^2 - \Delta\omega_{\rm fc}^2 + \Omega^2}\right)$$

 $\gamma = loss of filter cavity$ $\omega_{fc} = detuned frequency$

> Korea Astronomy and Space Science Institute

$$t_{\rm st} = \frac{1}{\gamma_{\rm fc}} = \frac{\sqrt{2}}{\Omega_{
m SQL}} \simeq 3 \,{
m ms}$$

Squeeze angle rotation

R. Schnabel / Physics Reports 684 (2017) 1–51

LIGO filter cavity

Astronomy and Science Institute

• OPO of LIGO squeezer

LIGO OPO

LIGO filter cavity

Astronomy and Science Institute

ALS with green laser

Fig. 2. (Color online) Schematic of the arm-length stabilisation system. The numbering indicates the flow of the lock acquisition process and corresponds to the enumerated list below.

Korea Astronomy and Space Science Institute

LIGO filter cavity

a Astronomy and e Science Institute