

An Introduction to Relativistic Hydrodynamics Simulation and Its Application

Jeongbhin Seo(UNIST)

A New Code for Relativistic Hydrodynamic simulation

Summary of Newly developed RHD code

To simulate accurate and realistic relativistic flow, we adopt the following schemes

- 5th order accurate WENO scheme (Jiang & Shu 1996, Jiang & Wu 1999) for spatial integration
- 2. Strong stability preserving Runge-Kutta (SSPRK) scheme (Spiteri & Ruuth 2002) for time integration
- **3.** Realistic equation of state (RC, Ryu et al 2006) to treat the flow with $\gamma = 4/3 5/3$
- 4. Transverse-flux averaging for multi-dimensional flows (Buchmüller et al. 2016)
- 5. Modification of eigenvalues for Suppression of Carbuncle Instability (Fleischmann et al. 2020)

RHD equations

$$\frac{\partial D}{\partial t} + \frac{\partial}{\partial x_j} (Dv_j) = 0$$
$$\frac{\partial M_i}{\partial t} + \frac{\partial}{\partial x_j} (M_i v_j + p\delta_{ij}) = 0$$
$$\frac{\partial E}{\partial t} + \frac{\partial}{\partial x_j} [(E+p)v_j] = 0$$

- (1) Mass conservation
- (2) Momentum conservation
- (3) Energy conservation

 $D = \rho \Gamma : \text{mass density}$ $M_i = \Gamma^2 h \rho v_i : \text{momentum density}$ $E = \Gamma^2 h \rho - p : \text{energy density}$

 ρ : proper rest mass density Γ : Lorentz factor h: specific enthalpy v_i : fluid three vector p: isotropic gas pressure

Equation of state (EOS)

For relativistic flows with thermal speed of particles ~ c, the following EOSs that approximate the EOS of singlecomponent perfect in relativistic regime (RP) is used:

RP:
$$h(p, \rho) = \frac{K_3(1/\Theta)}{K_2(1/\Theta)}$$
, (K's – Bessel functions)

 $\Theta = p/\rho$ is a temperature-like variable.

(RP is too expensive to be implemented in numerical codes).

RC:
$$h = 2 \frac{6\Theta^2 + 4\Theta + 1}{3\Theta + 2}$$
. (Ryu et al 2006)

Weighted Essentially Non-Oscillatory (WENO) scheme

Calculating the physical flux using a 5th order accurate finite-difference (FD) WENO reconstruction.

Tests for three different WENO weight functions,

1. WENO JS (Jiang & Shu 1996),

- 2. WENO Z (Borges et al. 2008),
- 3. WENO ZA (Liu et al. 2018).

WENO-Z is both accurate and robust. → Selected as the default scheme

Relativistic double-Mach reflection problem with an inclined shock

$$\mathbf{q}_{i,j,k}' = \mathbf{q}_{i,j,k} - \frac{\Delta t}{\Delta x} \left(\mathbf{F}_{i+\frac{1}{2},j,k} - \mathbf{F}_{i-\frac{1}{2},j,k} \right) - \frac{\Delta t}{\Delta y} \left(\mathbf{G}_{i,j+\frac{1}{2},k} - \mathbf{G}_{i,j-\frac{1}{2},k} \right) - \frac{\Delta t}{\Delta z} \left(\mathbf{H}_{i,j,k+\frac{1}{2}} - \mathbf{H}_{i,j,k-\frac{1}{2}} \right),$$

eight

$$\mathbf{F}_{i+\frac{1}{2}} = \frac{1}{12} \left(-\mathbf{F}_{i-1} + 7\mathbf{F}_i + 7\mathbf{F}_{i+1} - \mathbf{F}_{i+2} \right) + \sum_{s=1}^{5} \left[-\varphi_N \left(\Delta \mathbf{F}_{i-\frac{3}{2}}^{s+}, \Delta \mathbf{F}_{i-\frac{1}{2}}^{s+}, \Delta \mathbf{F}_{i+\frac{1}{2}}^{s+}, \Delta \mathbf{F}_{i+\frac{1}{2}}^{s+} \right) + \left(\varphi_N \left(\Delta \mathbf{F}_{i+\frac{5}{2}}^{s-}, \Delta \mathbf{F}_{i+\frac{3}{2}}^{s-}, \Delta \mathbf{F}_{i+\frac{1}{2}}^{s-}, \Delta \mathbf{F}_{i-\frac{1}{2}}^{s-} \right) \right] \mathbf{R}_{i+\frac{1}{2}}^{s},$$

$$\varphi_N(a, b, c, d) = \frac{1}{3} \omega_0 (a - 2b + c) + \frac{1}{6} \left(\omega_2 - \frac{1}{2} \right) (b - 2c + d).$$

e

$$\omega_0 = \frac{\delta_0}{\delta_0 + \delta_1 + \delta_2}, \quad \omega_2 = \frac{\delta_2}{\delta_0 + \delta_1 + \delta_2}.$$

 δ_r^Z

$$\delta_r^{JS} = \frac{C_r}{(\epsilon + IS_r)^2}, \quad r = 0, 1, 2, \quad \text{WENO JS}$$

$$\sum_r^Z = C_r \left(1 + \left(\frac{\tau_5}{\epsilon + IS_r}\right)^2 \right), \quad r = 0, 1, 2, \quad \text{WENO Z}$$

$$\delta_r^{ZA} = C_r \left(1 + \frac{A \cdot \tau_6}{\epsilon + IS_r} \right), \quad r = 0, 1, 2, \quad \text{WENO ZA}$$

Strong stability preserving Runge–Kutta (SSPRK)

Initial condition of this shock tube test

- Most of the code with WENO uses 4th order Runge-Kutta (RK4) scheme for time integration.
 - In RHD simulation, shock with transverse flow is hard to simulate.
- In such cases, even shock positions cannot be followed properly. It is a well-known problem in RHD simulations.
- With the SSPRK method, the code can simulate harsh conditions with strong stability.

Treatment for multi-dimensional problems

- $$\begin{split} \bar{\boldsymbol{q}}_{i,j,k} &= \boldsymbol{q}_{i,j,k} & \bar{\boldsymbol{F}}_{i\pm\frac{1}{2},j,k} = \boldsymbol{F}_{i\pm\frac{1}{2},j,k} \\ &- \frac{1}{24} \left(\boldsymbol{q}_{i,j-1,k} 2\boldsymbol{q}_{i,j,k} + \boldsymbol{q}_{i,j+1,k} \right) &+ \frac{1}{24} \left(\boldsymbol{F}_{i\pm\frac{1}{2},j-1,k} 2\boldsymbol{F}_{i\pm\frac{1}{2},j,k} + \boldsymbol{F}_{i\pm\frac{1}{2},j+1,k} \right) \\ &- \frac{1}{24} \left(\boldsymbol{q}_{i,j,k-1} 2\boldsymbol{q}_{i,j,k} + \boldsymbol{q}_{i,j,k+1} \right), &+ \frac{1}{24} \left(\boldsymbol{F}_{i\pm\frac{1}{2},j,k-1} 2\boldsymbol{F}_{i\pm\frac{1}{2},j,k} + \boldsymbol{F}_{i\pm\frac{1}{2},j,k+1} \right). \end{split}$$
- Transverse flux averaging scheme is proposed as a modified dimension-bydimension method for FV WENO schemes, which leads to high order accuracies for smooth solutions (Buchmüller et al. 2016).
- By bringing this scheme to our FD WENO scheme, we improve the accuracies for multi-dimensional flows.

Treatment for carbuncle instability

- Carbuncle instability arises at slowmoving grid-aligned shocks, e.g., bow shock of the jet.
- modified eigenvalues for RHD
 - $$\begin{split} c_s' &= \min(\phi |v_x|, c_s),\\ \text{(Fleischmann et al. 2020)}\\ \lambda_{1,5}' &= \frac{(1 {c'}_s^2) v_x \mp c'_s / \Gamma \sqrt{\mathcal{Q}}}{1 {c'}_s^2 v^2},\\ \lambda_{2,3,4}' &= v_x,\\ \mathcal{Q} &= 1 v_x^2 {c'}_s^2 (v_y^2 + v_z^2) \end{split}$$

 ϕ is a tunable parameter

→ This can effectively suppress Carbuncle instability

Unphysical structures due to carbuncle instability

Application to astrophysical jets

Application to astrophysical jets

Our state-of-art RHD code can simulate accurate and realistic Realistic EOS + 5th order WENO + SSPRK + Transverse-flux averaging + Modification of eigenvalues

By using the high-resolution capability

Follow detailed non-linear structures, e.g., shock, shear, and turbulence, generated in the jet-induced flow

- Analyze characteristics of these structures
- Study particle acceleration by these structures

What are Ultra-high energy cosmic rays (UHECRs)?

Hillas Energy $E_{max} = 0.9 \text{EeV} Z_i \left(\frac{B}{\mu \text{G}}\right) \left(\frac{v_s}{c}\right) \left(\frac{r}{\text{kpc}}\right)$

 $v_s \sim c, r_s \sim \text{kpc}$, and $B \sim \mu G$ for shock generated in jetinduced flows of Radio galaxy jet

→ Radio galaxy jet is a good candidate for generating UHECRs

shock locations

Shock distribution in jet-induced flows of FRII galaxy

Aim of this study

- Radio galaxy : relativistic jet that emits radio synchrotron emission
- Relativistic jets : Promising candidates of the UHECRs generator (Blandford et al. 2019; Rieger 2019; Hardcastle & Croston 2020; Matthews et al. 2020)
- classified into two Fanaroff-Riley (FR) types.
 FR-I : Mildly relativistic flume like jet, brightest center
 FR-II : Relativistic jet, brightest edge (Hot spot), radio lobe (cocoon)

X-ray: <u>NASA/CXC/SAO</u>; Optical: <u>NASA/STScl</u>; Radio: <u>NSF/NRAO/AUI/VLA</u>

Main question:

Can FR-II radio galaxies generate UHECRs?

Previous study of the UHECRs acceleration in Radio galaxy jet

Matthews et al 2019

- Diffusive shock acceleration
- Performed RHD simulation (PLUTO code)
- Hillas energy of the backflow shocks is presented (~10¹⁹eV for proton)
- Figure : Shock surface they found, within the jet (cyan), within backflow (orange)

Kimura et al 2018 & Ostrowski et al 1998

- Discrete shear acceleration
- Performed Monte-Carlo simulations with simple cylindrical configuration
- Energy spectrum of accelerated particles is presented
- Figure : schematic picture of shear acceleration in a jet- cocoon system of an AGN.

Caprioli 2018 & Mbarek et al 2019, 2021

- ➤ "expresso" acceleration
- Performed Monte-Carlo simulations using simulated MHD jet configuration
- Energy spectrum of acceleration particle is presented
- Figure : Schematic trajectory of a galactic CR reaccelerated by a relativistic jet

Flow chart of this study

Title of the study

topic

Development of a new code for Relativistic Hydrodynamics (RHD)

- Develop high order RHD code
- Main 5th order WENO + 4th order SSPRK
 - Adopt Realistic equation of state
 - Perform various code test

Simulations of FR-II jets: Structures and Dynamics

- Perform RHD jet simulation
- Study parameter dependency of the morphology and energetics of the jet
- Analyze non-linear structures

Monte Carlo Simulations for CR acceleration, using simulated FR-II jets

- Develop Cosmic ray transport code
- Analyze the acceleration process that occurred inside the jets
- Present UHECRs spectrum accelerated through FR-II jets

Developing Realistic and accurate RHD code

Monte-Carlo simulation

Structures generated in the jet-induced flow

The jet is halted at the **termination shock**, while the backflow forms a **cocoon/lobe** that encompasses the **jet spine**.

17 / 49

Step 1. Development of a new code for Relativistic Hydrodynamics (RHD)

Step 2. Simulations of FR-II jets: Structures and Dynamics

RHD simulations of relativistic jets

Seo et al. 2021b

- Relativistic HD simulation (**RHD**, No \vec{B} field)
- FR-II Type radio galaxy
- Grid resolution: $\Delta x \sim 0.1$ kpc
- $T_{dyn} \sim \frac{100 kpc}{0.1c} \sim a \text{ few Myr}$
- Isothermal Cluster profile

$$\rho(r) = \rho_0 \left[1 + \left(\frac{r}{r_c}\right)^2 \right]^{-3\beta/2}$$

r: distance from the center of the cluster r_c : core radius, 50kpc, β : 0.5

Main model parameters

Model name	$Q_j({ m erg~s}^{-1})$	$\eta\equivrac{ ho_j}{ ho_b}$	$\zeta \equiv rac{p_j}{p_b}$	$v_{ m j}/c$
Q45- η 5- ζ 0	3.34E + 45	$1.\mathrm{E}\text{-}05$	1	0.9905
Q46- η 5- ζ 0	$3.34E{+}46$	1.E-05	1	0.9990
Q46- η 5- ζ 0-H				
Q47- η 5- ζ 0	$3.34E{+}47$	1.E-05	1	0.9999
Q47- η 5- ζ 0-H				
Q45- η 4- ζ 0	3.34E + 45	1.E-04	1	0.9729
Q45- η 3- ζ 0	$3.34E{+}45$	1.E-03	1	0.8646
Q46- η 4- ζ 0	$3.34E{+}46$	1.E-04	1	0.9968
Q46- η 3- ζ 0	$3.34E{+}46$	1.E-03	1	0.9774
Q47- η 4- ζ 0	$3.34E{+}47$	1.E-04	1	0.9997
Q47- η 3- ζ 0	$3.34E{+}47$	1.E-03	1	0.9973
Q45- η 4- ζ 1	3.34E + 45	1.E-04	10	0.9157
Q46- η 4- ζ 1	3.34E + 46	1.E-04	10	0.9905
Q47- η 4- ζ 1	$3.34E{+}47$	1.E-04	10	0.9990

Jet power : The rate of the inflow energy through the jet inlet, excluding the mass energy

$$Q_j = \pi r_j^2 u_j \left(\Gamma_j^2 \rho_j h_j - \Gamma_j \rho_j c^2 \right)$$

 r_j : jet radius, u_j : initial jet velocity, Γ_j : Lorentz factor, ρ_j : jet density, h_j : spicific enthalpy, c: speed of light

To investigate the effect of

Jet power

> Jet density

Jet pressure

on morphology & non-linear structures

Properties of Shear and Turbulence

Shear

$$\Omega_{
m shear} \equiv |\partial v_z / \partial r|$$

Relativistic shear coefficient

 $\mathcal{S}_r = \frac{\Gamma_v^4}{15} (\frac{\partial v_z}{\partial r})^2$, (Rieger 2019)

Shear is strongest at jetcocoon boundary and inside the jet flow *S_r* is largest in the jet flow.

Total vorticity

 $oldsymbol{\Omega}_t = oldsymbol{
abla} imes oldsymbol{v}$

Vorticity excluding shear

$$\mathbf{\Omega}_{-} = \mathbf{\Omega}_{t} + \frac{\partial v_{z}}{\partial r} \hat{\boldsymbol{\theta}},$$

Backflow has large vorticity due to Turbulence

z(kpc)

z(kpc)

Step 3. Monte Carlo Simulations for CR acceleration, using simulated FR-II jets

Three Main Particle Acceleration Mechanisms

Seo et al 2021

Cosmic ray transport (Monte-Carlo) Code test

This method can reproduce an analytic solution of the stochastic acceleration processes.

Monte Carlo simulations for CR transport

Monte Carlo simulations for CR transport

- Initially CRs : 10TeV-PeV(10¹³⁻¹⁵eV) with power-law $dN/dE \propto E^{-2.7}$.
- CRs are **injected uniformly** at the jet nozzle.
- Particles are continuously injected and advected with evolving jet profile

Prescriptions for Particle Scattering

mean free path: $\lambda_{mf} \propto E^{\delta}$

$$\boldsymbol{E} < \boldsymbol{E}_{coh}: \qquad \qquad E_{coh} = eZ_i BL_0 = 0.89 \text{ EeV} \cdot Z_i (B/1\mu\text{G}) (L_0/1\text{kpc})$$

Kolmogorov scattering

Scattered with MHD waves (with Kolmogorov spectrum)

$$\rightarrow \lambda_{mf} \propto E^{\frac{1}{3}}$$

Bohm scattering only at shocks

scattered with **self-generated waves near shocks**.

$$\lambda_{mf} \propto E$$

E > **E**_{coh}: Non-resonant scattering

Mean free path is larger than the scale of turbulence.

$$\rightarrow \lambda_{mf} \propto E^2$$

Prescriptions for magnetic field

Internal energy model

$$\frac{B_p^2}{8\pi} = \frac{p}{\beta}.$$

- Turbulence kinetic energy model
 - $\frac{B_{turb}^2}{8\pi} \approx K E_{turb}$
- Shock amplification model

$$\frac{B_{Bell}^2}{8\pi} \approx \frac{3}{2} \frac{v_s}{c} P_{CR} \approx \frac{3}{2} \frac{v_s}{c} (0.1\rho_1 v_s^2)$$
$$B_{comov} = \max(B_p, B_{turb}, B_{Bell})$$

 $B_{\rm obs} \approx \Gamma B_{\rm comov}$ in the simulation frame

Acceleration Time scales

This simulation only follows energy changing with scattering. Q : How do we determine the primary acceleration process in each scattering?

A : Among the three different acceleration processes,

the acceleration process with the shortest t_{acc} would be the most dominant one.

→ selected as the **primary acceleration process**.

processes in common jet region

Sample trajectory

34 / 49

Particle energy spectrum

- Accelerated particles has a powerlaw spectrum with a cutoff.
- > The slope of the power-law is $\frac{dN}{dE} \propto E^{-0.4} E^{-0.8}$, depending on the scattering law.
- In early time, maximum energy is determined by the age of the jet, while in the late stage, it is controlled by the cocoon width.

age-limited

$$E_{\text{max,a}} \approx \left[\frac{(t_{\text{age}}c)\Gamma_z^2 \beta_z^2}{\zeta L_0} \right]^{1/2} E_{\text{coh}}.$$

size-limited

$$E_{\text{max,s}} \approx E_{\text{coh}} \left[\mathcal{W} \frac{r_j}{L_0} \right]^{1/2} \approx 4 \text{ EeV} \cdot Z_i (\frac{B}{1\mu\text{G}}) (\frac{L_0}{1\text{kpc}}) (\frac{\mathcal{W}}{20})^{1/2}.$$

Evolution of the energy spectrum of escaping particles, line color indicates **time**.

Distribution of energy gains for accelerated particles

fractions of the cumulative energy gain due to different Acceleration Process:

where AP = shock, turbulence, & shear

Here, $\varepsilon_{AP}(E)$ is the sum of ΔE of all scattering events tagged as a given type of AP for the particles whose final energy E lies in the logarithmic bin of [log E, log E + d log E]

For high-energy particles, the energy gain by **shear acceleration** is dominant. **Shear acceleration** is the primary mechanism to generate **UHECRs**. **Shock acceleration** contributes to the production of UHECRs up to Hillas energy of the shock. **Turbulence acceleration** plays a secondary role.

Restricted random walk model

In a realist jet flow, there may **not** be **magnetic fluctuations strong enough** to scatter in a random walk manner for **high energy particles**

Jet power dependency

> Slope

Power-law slope is **harder** when the **jet power** is **lower**, due to the amount of the non-linear structures (more efficient DSA and TSA) contained in a cocoon.

$\succ E_{cut}$

Depending on the **cocoon width** and **strength of the magnetic field**. Higher jet power cases have higher E_{cut} , because of the strong magnetic field. Q47 model has extremely thin cocoon, hence it prevents further nGSA.

Mean free path model dependency

mean free path:	$\lambda_f = (E/E_{\rm coh})^{\delta} L_0, \ E_{\rm coh} = eZ_i B L_0$
reference:	$E < E_{\rm coh}$: $\delta = 1/3$, $\delta = 1$ (at shocks)
	$E > E_{\rm coh}$: $\delta = 2$
model A:	$E < E_{\rm coh}$: $\delta = 1/3$
	$E > E_{\rm coh}$: $\delta = 2$
model B:	$E < E_{\rm coh}$: $\delta = 1/3$, $\delta = 1$ (at shocks)
	$E > E_{\rm coh}$: $\delta = 1/3$
Kolmogorov scattering:	$\delta = 1/3$
nonresonant scattering:	$\delta = 2$
Bohm scattering:	$\delta = 1$

Model A: for $E_{coh} > E$, $\lambda_{Kolmo} > \lambda_{Bohm}$, less acceleration can occur **Model B**: for $E_{coh} < E$, $\lambda_{Kolmo} < \lambda_{non-res}$, Further acceleration can occur **Low beta (stronger B field)** : smaller mean free path induces further acceleration

Summary

New features in our RHD code

- 1. 5th order accurate **WENO** scheme (Jiang & Shu 1996, Jiang & Wu 1999) for spatial integration
- 2. strong stability preserving Runge-Kutta (SSPRK) scheme (Spiteri & Ruuth 2002) for time integration
- 3. Realistic equation of state (**RC**, Ryu et al 2006) to treat the flow with $\gamma = 4/3 5/3$
- 4. Transverse-flux averaging for multi-dimensional flows (Buchmüller et al. 2016)
- Modification of eigenvalues for Suppression of Carbuncle Instability (Fleischmann et al. 2020)

Application:

- **1. Relativistic jets:** we can identify and analyze non-linear structures such as **shocks**, **shear**, & turbulence.
- 2. Using **Monte Carlo simulations** for CR transport through the simulated jet flows, we can study the acceleration of Ultra-high energy cosmic rays through shocks, shear & turbulence.