2022-10-26 | APCTP

Unveiling Impacts of Dynamical Effects on the Cataclysmic Variables in Globular Clusters

Kwangmin Oh David Hui Jongsuk Hong Sangin Kim

Chungnam National University Korea Astronomy and Space Science Institute

Introduction

MOCCA

Result

2

Introduction

Globular cluster (GC)

One of the densest object in the universe

- Strong dynamical interaction (high encounter rate)
- Efficient factory of compact binaries
- ~160 GCs in our galaxy

Why Globular Cluster

- More exotic phenomena than galactic field
- Resources after launching high resolution telescopes
 (e.g. Hubble space telescope, Chandra X-ray observatory)
- Good window for binary formation episodes
- Already well-known distance

Cataclysmic Variable

Cataclysmic Variable (CVs)

What is CV?

- Binary composed of a White Dwarf (WD) and a Main Sequence (MS) star
- Focus on bright CV (e.g. intermediate polar, polar, magnetic CVs)
- Spectrally hard and bright in X-ray

Role of CV formation

- GC is good environment for studying formation of CVs
- Interesting formation origin
- Simulation vs Observation

MOCCA

MOnte Carlo Cluster simulAtor

MOnte Carlo Cluster simulAtor (MOCCA)

What is MOCCA?

- To perform simulations of a real size star clusters
- N-body simulation (up to N=1,000,000)
- Few-body interactions
- Includes detailed evolution of each stars
- Good for studying compact binaries dynamics

How does it work?

- Total 81 models due to the different initial conditions
- Snapshots every 250 Myr
- For the comparison with observation, Present Day Population (PDP), the age around 12 Gyr

MOnte Carlo Cluster simulAtor (MOCCA)

Initial parameters

- Initial seed (200K, 500K, 1M)
- Galactocentric distance (4kpc, 8kpc, 16kpc)
- Half-mass radius (1pc, 2pc, 4pc)
- Initial binary fraction (10%, 20%, 50%)

Previous work by Hong et al. 2017

- Our study can be the extended study which includes X-ray regime
- CV formation mechanism in GC
- Found the correlation between N_{CV} and encounter rate

Total 81 GC models

Primordial CVs (P group) & Exchange CVs (E group)

CVs into P group and E group according to their formation origin

Method

Basic procedure

Brief idea before we jump into..

- 1. CV is comparably easy to classify in X-ray
- 2. CVs have the large fraction of X-ray emission
- 3. Can we can derive X-ray luminosity from MOCCA? Yes!
- 4. Clues for revealing the production dynamics of CVs

Extracting CVs

- Search for the binaries composed of WD and Main sequence (MS)
- Among those binaries, filtering the binaries which have Roche-lobe overflow
- After sorting out, calculate X-ray luminosity

$$q = M_1/M_2, \text{ i.e.}$$
$$\frac{R_{\text{L},1}}{a} = \frac{0.49q^{2/3}}{0.6q^{2/3} + \ln(1+q^{1/3})}$$

X-ray luminosity of CV (simplified)

Mass transfer rate

- For the CV with cold/neural and stable and unstable disc (Belloni et al. 2016) :

$$\dot{M}_{A} = 6.344 \times 10^{-11} \alpha_{c}^{-0.004} \left(\frac{M_{WD}}{M_{\odot}}\right)^{-0.88} \times \left(\frac{r}{10^{10} \text{ cm}}\right)^{2.65} \text{ M}_{\odot} \text{ yr}^{-1}$$
X-ray luminosity
- Simply adopt slowly rotating WD (Patterson & Raymond, 1985) :

$$L_{\rm X} = \varepsilon \; \frac{G \; M_{\rm WD} \; \dot{M}_{\rm dQ}}{2 \; R_{\rm WD}}$$

- ε = 0.5, for the fraction of the X-rays emitted inwards and absorbed by the WD
- L_X cumulative distribution function (CDF) for X-ray distribution for P & E groups

L_X cumulative distribution function (CDF)

E group and P group distribution in whole 81 GC models at 12 Gyr (PDP)

L_X cumulative distribution function (CDF)

Observationally detected CV

Observational CV fraction

- CVs in core-collapse GCs dominate comparably higher fraction
- More sample will be adopted in the future

CV domination of L_x in different GCs			
GC name	CV fraction in L_x^{tot}		
47 TUC	37.27%		
Omega-cen	7.21%		
NGC6397	84.32%		
NGC6752	88.14%		
: Information for core status from Harris catalog (2010			
Core-collapse			

- Do bright CVs in core-collapse GCs form via dynamical interaction?

Core-collapse vs non-core-collapse GC

Observational CV fraction

- CVs in core-collapse GCs dominate comparably higher fraction
- More sample will be adopted in the future

CV domination of L_x in different GCs			
GC name	CV fraction in L_x^{tot}		
47 TUC	37.27%		
Omega-cen	7.21%		
NGC6397	84.32%		
NGC6752	88.14%		
Core-collapse			

How we define core-collapse status in MOCCA GC models?

- Tracking the ratio of core-radius & half-mass radius ratio of cluster
- Checking the X-ray luminosity variation
- Number of CVs along the time

Core-collapse vs non-core-collapse GC

In this MOCCA model, core-collapse begins at ~10 Gyr!

Core-collapse vs non-core-collapse GC

Once we use mean values in both observation and simulation, $log\Delta L_{X,obs} \sim 0.51 \& log\Delta L_{X,sim} \sim 0.55$

Further statistical test

Anderson-Darling test for dominant factors

- Which factors are mostly dominate for bright CVs?
- The bigger difference from mass of WD and radius of WD

Anderson-Darling test			
Parameter	AD value	P-value	
Semi-major Axis	10.2	7.865e-06	
$\log L_x$	13.9	7.453e-08	
$\log M_{dot}$	29.7	1.483e-16	
Orbital period	29.3	2.423e-16	
M_{ms}	43.1	6.702e-24	
M_{wd}	94.1	5.741e-52	
R_{wd}	94.1	5.741e-52	
Dominant factors	P vs E in total 81 models		

Comparison of Dynamical formed CVs & Primordial CVs

Summary & Future work

Summary & Future scheme

Summary

- Dynamical formed CVs can have dominant fraction of core-collapse GC
- M-R relation can explain deeper gravitational potential & mass segregation effect of GC
- CV population can be a new parameter for considering the evolutional status of GC
- Not only CVs, the other compact objects would tell us more about GC dynamics

Future scheme

- LMXB and BH-BH binaries in GC can be new target with MOCCA
- Exotic BH binary such as large eccentricity or tilted rotational axis BH binaries due to dynamical interaction
- Updating MOCCA code for more energetic binary