Numerical Simulations of Accretion-Ejection around Compact Objects:

What to include (and what not to)?
P1. Study of Accretion

Ayan Bhattacharjee
UNIST

The 68th Workshop on Gravitational Waves and Numerical Relativity
2023.03.16, APCTP

Contact: ayan(@unist.ac.kr



mailto:ayan@unist.ac.kr

rht /M (2, 2)

rh™ /M (2, 1)

o

bo

g

FIG. 8.

mode.

Why Accretion? How can it affect Gravitational Waves?
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Strain waveforms forthe [ = 2, m = 2 (top), and m = 1
(bottom) radiation multipoles. To ease comparison, phases have
been rotated to align at maximum amplitude of the [ = 2, m = 2
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Rev, D., 103, 043013
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Figure 8, Time taken by the companion for coalescence as a function of the rafial distance from the contre. Curves (A) and (B) are drawn without the disc

for Kerr parameter a = O and 0.3, respectively. Curves (C) aad (D) are drawn when the accretion dise is peesent and the companion s acceeting ot Bonds rates
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FIG. 3. Typical modulated wave forms and correlations between
frequency and accretion rates. The logarithm of the signal is shown
as a function of time for an /=3 and r_.= 15 simulation (solid line).
The dotted line indicates the ringdown of a vacuum black hole with
M = 1. The decay rate modulation i1s particularly evident here. We
have not analyzed this effect quantitatively. The inset shows the late
time behavior of the signal frequency in correlation with the accre-
tion rate, as a function of time (same simulation) The solid line
depicts the evolution of the accretion rate d log(M)/dT versus ob-
server time 7. That quantity is derived from the location of the
horizon and is governed directly by the amount of inflowing
fluid. Overlayed on the mass accretion rate is the logarithmic time
derivative of the signal frequency. At late times the accretion flow
leads to a power law slope (in this case the slope equals —4.5) and
we find that the ISF curve itself follows a power law of the same
slope.

Papadopoulos & Font, 2001,

Phys. Rev. D., 63, 044016
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Why ‘unified model’? A. Spectral Properties

HB->NB->botNB

Cygnus X-1

R lllllll ) -2 lllllll - B lllllll

! il

IIITHI T T lIlllll T LI IIIII] T | O | IIIIII T | 05 | IIIII'
— '.’ -
~
p--— / —
= e =
- s -
B / ]
|/ — ]
k /, '
[
=[] Cygnus X-1 -
IR/ )
L1 .
— ” —

1 1 jllllll

1 10 100

E [keV]
McConnell et al., 2002, Apd, 572 984

1000

104

e
C

%
KDV (Photons cm™ § " keV'')

Ay

o — - — v v— Yy —
3

xeV')

keV? (Photons cm® &

100

10

0.1

0.01

v ey

T

t == HB !l
10 -= NB | { 6 kb
== hOINB L
3
‘04 a2 a2 a2 a2 a2al L a 2 a2 22l 1 1h
< 10 20 50 100 200

IS

-

|

PN B T e Yo G

Energy (keV)

LLB

Al

|
or}
r

10 { \
10+ [

N

L
! 1
) '...L~J..£‘.' ———
0 -v‘v
- e ‘u
s

Nt | ]
]
|
1

s

o VW™ ‘\YS

keV? (Photons crm® 57 keV-')

botFB->midFB->topFB

100

0.01

-

== OpFB

10 - MidFB
== botFB . [
'-0‘ a a2 2 a2l a ™ At A ™ |
5 10 20 50 100

Energy (keV)

W ——

[ » .
v — — v—

vt +
h
b
H) ] ; ! !
4 ‘3 ) ot rarsege g
. p :
. . - .
1 B | 4
-
} b 4
e et e e b e
5 ! !
Lrery

Seifina, Titarchuk, Shrader, et al. 2015, ApdJ, 808, 142

Scorpius X-1

4U 1705-44

3/45



High-frequency QPO
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Why ‘unified model’? B. Timing

Low-frequency QPO
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What is ‘Two-Component Advective Flow’?
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What is ‘Two-Component Advective Flow’/TCAF?

CHAKRABARTI
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Chakrabarti, 2015, Whither TCAF?, arXiv: 1509.00565
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Accretion around black
holes occur through two
components: a thin
Keplerian disk which
emits blackbody
radiation; a thick
radiatively inefficient
sub-Keplerian disk.

Numerical simulations
confirm the formation of
such structures.

Temporal features such
as QPOs can also be
explained through this.
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How does TCAF explain the spectra and timing?

1. Spectral states and

(c) SIM (d) SS timing features are
WERRO woRFO connected. Both can be
explained by the TCAF

parameters: m g, m;, X, R
. 2. Interplay of m , m, leads

to formation, oscillation

and motion of the shock,

which 1n turn controls
the Comptonization.

iv) vi) vii) viii) ix) : ..
3. During a rising phase of
'»Nb»««««.«.‘ outburst, 71, rises (1,
decreases). Opposite
HIM SIM SS SIM HIM '
WOPO WOPO WSQPO WOQPO  WSQPO  WQPO HOPO happens during the

declining phase.

Chakrabarti, S. K., 2016, Study of Accretion processes Around Black Holes becomes Science: Tell Tale Observational Signatures of Two Component Advective Flows, arXiv:1604.05955
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Simulation Setup: Accretion around Neutron Stars

1. Axisymmetric system.

2. Smoothed Particle Hydrodynamics
formalism for solving conservation
equations.

3. Inner boundary specified by the
neutron star surface.
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3. Inner part dominated by instability.

4. Ejection from post-shock region.
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Bhattacharjee and Chakrabarti, 2019, ApJ, 873, 119
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Results: Timing Properties

Density Temperature Mach Number

1. Rise in density and Temperature 1n
the post-shock region.

2. Vertical oscillation of inner hot
region.

Bhattacharjee and Chakrabarti, 2019, ApJ, 873, 119



