
Results: Timing Properties
Viscous Flows
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1. A transition layer is seen 
to be forming to 
accommodate the change 
in angular momentum at 
the NS surface.   

2. When viscosity is raised, 
this transition layer 
grows radially. 

3. A Keplerial disk forms 
between the transition 
layer and the sub-
Keplerian flow. 
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Results: Spectral Properties
TCAF around 
Neutron Stars

Bhattacharjee A., Chakrabarti S. K., MNRAS 472, 1361-1371 (2017)

16/45



Bhattacharjee A., Chakrabarti S. K., MNRAS 472, 1361-1371 (2017)

2

Results: Spectral Properties
TCAF around 
Neutron Stars

17/45



Results: Spectral Properties
TCAF around 
Neutron Stars

1. Both the disk and halo 
accretion rate control the 
spectral shape.   

2. Increase in halo 
accretion increases the 
hardness of the spectra. 

3. The simulated spectra 
matches well with 
multiple neutron stars X-
ray binaries. 
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Results: Spectral Properties
TCAF around 
Neutron Stars
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Bhattacharjee A., Chakrabarti S. K., MNRAS 472, 1361-1371 (2017)

1. Cooling of CENBOL. 

2. Shift of peak temperature location. 

3. Matches with models used for 
spectral analysis. 

!

!
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Schematic of the Model

Tcaf Around Compact Objects or… TACO??

For BH: 
, 

, 
TCO = 0.0
fIC = 0.0
fCB = 0.0
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Use of TCAF: Case Studies 

Bhattacharjee et al. 2017, MNRAS, 466, 1372 Banerjee et al. 2019, arXiv, 1904.11644

Persistent: Cygnus X-1Transient: H1743-322
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TCAF Modelling of BH Sources

Bhattacharjee et al. 2017, MNRAS, 466, 1372 Banerjee et al. 2019, arXiv, 1904.11644

H1743-322 Cygnus X-1
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Variation with MBH

Intensity

E (keV)

TACO: Simulated Spectra of BH

Hard 
State

Soft 
State

Hard-Intermediate 
State

Soft-Intermediate 
State

, 
, 

MBH = 5.0
MBH = 10.0
MBH = 15.0
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Conclusions: P1
Accretion around 
Compact Objects

• The accretion process around compact objects can be explained with two components of accretion: a Keplrian disk and a sub-
Keplerian disk (Chkarabarti and Titarchuk 1995). This framework seems to provide a reasonable insight into the spectral and 
temporal variation of black holes and neutron stars, especially in the X-ray (Bhattacharjee 2018).  

• Simulating accretion around such objects can be done with a combination of radiation loss within a hydrodynamic code 
(Bhattacharjee and Chakrabarti 2019). 

• Formation of Keplerian disk requires a treatment for viscosity and more realistic treatment of radiative loss (Bhattacharjee and 
Chakrabarti 2020, 2021).   

• Jets and outflows are produced due to the formation of shocks in the accretion (Bhattacharjee and Chakrabarti 2019).

Thank You!
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The 68th Workshop on Gravitational Waves and Numerical Relativity  
2023.03.16, APCTP

Numerical Simulations of Accretion-Ejection around Compact Objects: What to 
include (and what not to)? 
P2. Study of Jets

Ayan Bhattacharjee 

UNIST

Contact: ayan@unist.ac.kr



What are Radio Galaxy Jets?

FR-I

FR-II

Image Credits: Frank M. Reiger
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Morphological Dichotomy of Jets: Fanaroff-Riley Classification

, FR-I
db

df
< 0.5 , FR-II

db

df
> 0.5

Image Credits: Frank M. Reiger
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What are the key characteristics of FR-I?

Distance (log scale)

vj /c
X-Rays

Radio

6 kpc5.5 kpc

Hardcastle and Croston, 2011, MNRAS, 415, 133 Wykes et al. 2019, MNRAS, 485, 872

‣Diffused emission in radio ‣Deceleration of jet
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Observational Outlook: Evolving Dichotomy 

Mingo et al. 
2019

Ledlow and 
Owen 1996

Fanaroff and 
Riley 1974
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Observational Outlook: Present View 

FR-II

FR-I

Mingo et al. 
2019
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Low-Powered FR-II Overlap of FR-I/II Subclasses of FR-I/II 



Theoretical Outlook: Present View 

Matsumoto+ 
2017

Gourgouliatos, 
Komissarov 

2018

Perucho+ 2010

KHICFIRTI
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Observation vs Theory

Laing and Bridle 2014, many moreLaing and Bridle 2002
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Perucho et al. 2014, MNRAS, 441, 1488

Simulation Setup

;  

     

Pext = kBText

μX
next = kBText

μX
n0[1 + ( r

rc
)

2
]

−3βatm/2

μ = 0.5, X = 1, n0 = 0.18cm−3, rc = 1.2 kpc, βatm = 0.73.

;Pext = (5.7 ± 0.9) × 10−11(r/r0)−1.5±0.2 dyn cm−2

r0 = 1.0 kpc .

Stellar Mass-Loading Rate: , Q = Q0( rb

r )
γ

[1 + ( r
rb

)
α

]
(γ−β)/α

α = 2.0, β = 0.46, γ = 0, rb = 265pc .

King Profile

Power-Law Profile

Stellar Mass-Loading Profile

Perucho et al. 2014, MNRAS, 441, 1488

Wykes et al. 2019, MNRAS, 485, 872
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Fiducial Set: Variation of Flow Structure with Jet Power

Preliminary 

Results
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Bhattacharjee, Seo, Ryu, Kang, 2023a (in prep)



Simulating Radio Maps

 GHzνobs = 1.5

‣ ; . 
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Estimating Bcomov

Bcomov = max(Bp, Bturb, BBell)

Estimating $′ 

e

p = 3.0, C′ 

E = 103 .
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Fiducial Set: Variation of Radio Image with Jet Power

Preliminary 

Results
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Bhattacharjee, Seo, Ryu, Kang, 2023a (in prep)



Effects of Jet Density

Preliminary 

Results
Preliminary 

Results
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Bhattacharjee, Seo, Ryu, Kang, 2023a (in prep)



Effects of Scales of Propagation and Jet Radius

Preliminary 

Results
Preliminary 

Results
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Bhattacharjee, Seo, Ryu, Kang, 2023a (in prep)



Effects of Ambient Media: Steeper Background vs Background with Mass-Loading

Preliminary 

Results
Preliminary 

Results
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Q42 − η5 − r10 − P

Effects of Ambient Media: King vs Power-Law

500 pcQ42 − η5 − r10
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Preliminary 

Results
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Q42 − η5 − r10 − M
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Effects of Ambient Media: Mass-Loading
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Effects of Ambient Media:  erg/sQj ∼ 1042 − 1045

t/tcross = 21
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Results
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Effects of Mass-Loading:  erg/sQj ∼ 1042 − 1045

500 pc

Q′ 

0 = 2Q0

Q0 = 9.49 × 1023 gyr−1pc−3

Q0 ∼ 19 × QPeruchoPreliminary 

Results
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Conclusions: P2

• The jets ejected from AGN requires different treatment at different stages of their lifetime.  

• Expanded jets, which have reached ICM and have reached mildly relativistic speeds can be treated well within a purely 
hydrodynamic setup (Massaglia et el. 2016).  

• Jets that transition from ultra-relativistic to mildly relativistic or non-relativistic speeds requires Relativistic Hydrodynamic 
simulations for correctly capturing their dynamics [Rossi et al. 2008; Perucho et al. 2014; Bhattacharjee et al. 2023 (in prep)]. 

• Launching of jets do not require strong magnetic fields and is most likely can have hydrodynamic origin.  

• Magnetic fields can be important in the acceleration phase of jets, however, radiative acceleration can also be important and this 
treatment requires further comparative studies.

Jets around AGN

Thank You!
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