Results: Timing Properties

- 1. A transition layer is seen to be forming to accommodate the change in angular momentum at the NS surface.
- 2. When viscosity is raised, this transition layer grows radially.
- 3. A Keplerial disk forms between the transition layer and the sub-Keplerian flow.

Results: Spectral Properties

Bhattacharjee A., Chakrabarti S. K., MNRAS 472, 1361-1371 (2017)

TCAF around **Neutron Stars**

Results: Spectral Properties

Nata=0033, hv=1.95 keV, 0=147.362"

Table 2 List of parameters for the system used in simulation

ID	$\dot{m}_d (M_{EDD})$	mh (MEDD)	$X_s(r_S)$	T_{CE} (keV)	nee (×1018)	T_{NS} (keV)	θ_* (degrees)	$T_e(\tau_0)$ (keV)
C1	0.1	0.1	46.8	25.0	1.772	0.802	11.52	22.062
C2	0.1	0.2	46.8	25.0	2.658	0.888	17.48	22.062
C3	0.1	0.5	46.8	25.0	5.317	1.056	36.90	22.062
C4	0.2	0.1	30.0	10.0	1.515	0.888	17.48	8.909
C5	0.2	0.2	30.0	10.0	2.020	0.954	23.61	8.909
C6	0.2	0.5	30.0	10.0	3.535	1.098	44.40	8.909
C7	0.5	0.1	21.8	3.0	2.100	1.056	36.90	2.705
CB	0.5	0.2	21.8	3.0	2.450	1.098	44.40	2.705
C9	0.5	0.5	21.8	3.0	3.500	1.200	90.00	2.705

Bhattacharjee A., Chakrabarti S. K., MNRAS 472, 1361-1371 (2017)

Num=0079, hv=121.83 keV, 0=121.657°

N_{arat}=0088, hv=17.31 keV, 0=76.9176*

TCAF around **Neutron Stars**

- 1. Both the disk and halo accretion rate control the spectral shape.
- Increase in halo 2. accretion increases the hardness of the spectra.
- The simulated spectra 3. matches well with multiple neutron stars Xray binaries.

Results: Spectral Properties

(b) \dot{m}_{d} =0.1, \dot{m}_{h} =0.5, $T_{e}(\tau_{0}/2)^{NS}$ =4.5 keV, $T_{e}(\tau_{0}/2)^{KD}$ =41.5 keV

(d) \dot{m}_{d} =0.1, \dot{m}_{h} =0.9, $T_{e}(\tau_{0}/2)^{NS}$ =7.4 keV, $T_{e}(\tau_{0}/2)^{KD}$ =35.1 keV

(a) $m_d=0.1$, $m_h=0.3$, $T_e(\tau_0/2)^{NS}=7.2 \text{ keV}$, $T_e(\tau_0/2)^{KD}=64.7 \text{ keV}$

(c) \dot{m}_{d} =0.1, \dot{m}_{h} =0.7, $T_{e}(\tau_{0}/2)^{NS}$ =3.6 keV, $T_{e}(\tau_{0}/2)^{KD}$ =30.8 keV

Bhattacharjee A., Chakrabarti S. K., MNRAS 472, 1361-1371 (2017)

-0.45 0.4 0.35 Disk Black-body 0.3 0.25 0.2 0.15 0.05

TCAF around **Neutron Stars**

- Cooling of CENBOL. 1.
- Shift of peak temperature location. 2.
- 3. Matches with models used for spectral analysis.

Tcaf Around Compact Objects or... TACO??

Schematic of the Model

For BH: $T_{CO} = 0.0$, $f_{IC} = 0.0$, $f_{CB} = 0.0$

Use of TCAF: Case Studies

Bhattacharjee et al. 2017, MNRAS, 466, 1372

21/45

Banerjee et al. 2019, arXiv, 1904.11644

TCAF Modelling of BH Sources

H1743-322

Bhattacharjee et al. 2017, MNRAS, 466, 1372

22/45

Banerjee et al. 2019, arXiv, 1904.11644

TACO: Simulated Spectra of BH

Variation with M_{BH}

 $M_{BH} = 5.0,$ $M_{BH} = 10.0,$ $M_{BH} = 15.0$

TACO: Simulated Spectra of NS

Conclusions: P1

Accretion around **Compact Objects**

- temporal variation of black holes and neutron stars, especially in the X-ray (Bhattacharjee 2018).
- Simulating accretion around such objects can be done with a combination of radiation loss within a hydrodynamic code (Bhattacharjee and Chakrabarti 2019).
- Chakrabarti 2020, 2021).
- Jets and outflows are produced due to the formation of shocks in the accretion (Bhattacharjee and Chakrabarti 2019).

• The accretion process around compact objects can be explained with two components of accretion: a Keplrian disk and a sub-Keplerian disk (Chkarabarti and Titarchuk 1995). This framework seems to provide a reasonable insight into the spectral and

• Formation of Keplerian disk requires a treatment for viscosity and more realistic treatment of radiative loss (Bhattacharjee and

Contact: <u>ayan@unist.ac.kr</u>

Numerical Simulations of Accretion-Ejection around Compact Objects: What to include (and what not to)? P2. Study of Jets

Ayan Bhattacharjee

UNIST

The 68th Workshop on Gravitational Waves and Numerical Relativity 2023.03.16, APCTP

Contact: <u>ayan@unist.ac.kr</u>

What are Radio Galaxy Jets?

Image Credits: Frank M. Reiger

Morphological Dichotomy of Jets: Fanaroff-Riley Classification

Radio galaxy Cygnus A at 5 GHz , d ~ 220 Mpc, (z=0.056), extension ~120 kpc (credits: NRAO/AUI, A. Bridle)

Image Credits: Frank M. Reiger

What are the key characteristics of FR-I?

Hardcastle and Croston, 2011, MNRAS, 415, 133

Diffused emission in radio

Deceleration of jet

Observational Outlook: Evolving Dichotomy

Ledlow and Owen 1996

Mingo et al. 2019

Observational Outlook: Present View

Low-Powered FR-II

Overlap of FR-I/II

FR-I

0

(c) FRII, all structures connected

Mingo et al. 2019

(d) FRII, structures not connected

Theoretical Outlook: Present View

CFI

KHI

32/45

Perucho+ 2010

Gourgouliatos, Komissarov 2018

Observation vs Theory

Laing and Bridle 2002

Laing and Bridle 2014, many more

Simulation Setup

King Profile

$$P_{ext} = \frac{k_B T_{ext}}{\mu X} n_{ext} = \frac{k_B T_{ext}}{\mu X} n_0 \Big[1 + \Big(\frac{r}{r_c}\Big)^2 \Big]^{-3\beta_{atm}/2};$$

 $\mu = 0.5, X = 1, n_0 = 0.18 cm^{-3}, r_c = 1.2 kpc, \beta_{atm} = 0.73.$

Perucho et al. 2014, MNRAS, 441, 1488

Power-Law Profile

 $P_{ext} = (5.7 \pm 0.9) \times 10^{-11} (r/r_0)^{-1.5 \pm 0.2} dyn \ cm^{-2};$ $r_0 = 1.0 \ kpc$.

Wykes et al. 2019, MNRAS, 485, 872

Stellar Mass-Loading Rate:
$$Q = Q_0 \left(\frac{r_b}{r}\right)^{\gamma} \left[1 + \frac{r_b}{r}\right]^{\gamma} \left[1 + \frac{r_b$$

34/45

Perucho et al. 2014, MNRAS, 441, 1488

Fiducial Set: Variation of Flow Structure with Jet Power

Bhattacharjee, Seo, Ryu, Kang, 2023a (in prep)

Simulating Radio Maps

 $D_{\rm L} = 1/(\Gamma[1-\beta\cos\theta_{\rm obs}])$

$$\begin{split} j_{\nu'}^{'} &= \frac{4}{9} \Big(\frac{q^2}{mc^2} \Big)^2 u_B^{'} \nu^{'\frac{1}{2}} \nu_0^{'-\frac{3}{2}} \beta_e^{'2} c \mathcal{N}_e^{'} \Big(\sqrt{\frac{\nu'}{\nu_0'}} \Big), \\ j_{\nu'}^{'} &= -\frac{2}{9} \frac{\mathcal{P} + 2}{m\nu'^2} \Big(\frac{q^2}{mc^2} \Big)^2 u_B^{'} \nu_0^{'-1} \beta_e^{'2} c \mathcal{N}_e^{'} \Big(\sqrt{\frac{\nu'}{\nu_0'}} \Big). \end{split}$$

$$\begin{split} j_{\nu'}^{'} &= \frac{4}{9} \Big(\frac{q^2}{mc^2} \Big)^2 u_B^{'} \nu^{'\frac{1}{2}} \nu_0^{'-\frac{3}{2}} \beta_e^{'2} c \mathcal{N}_e^{'} \Big(\sqrt{\frac{\nu'}{\nu_0'}} \Big), \\ \alpha_{\nu'}^{'} &= -\frac{2}{9} \frac{\mathcal{P}+2}{m\nu'^2} \Big(\frac{q^2}{mc^2} \Big)^2 u_B^{'} \nu_0^{'-1} \beta_e^{'2} c \mathcal{N}_e^{'} \Big(\sqrt{\frac{\nu'}{\nu_0'}} \Big). \end{split}$$

$$j_{\nu} = D_{\rm L}^2 j_{\nu'}' (\nu_{\rm obs}/D_{\rm L}),$$

 $\alpha_{\nu} = D_{\rm L}^{-1} \alpha_{\nu'}' (\nu_{\rm obs}/D_{\rm L}).$

$$\alpha_{\nu} = L$$

 dI_{ν} ds

$$\nu_{obs}$$

Estimating B_{comov}

$$B_{p}^{2} = \frac{p}{\beta}; \beta = 100.$$

$$B_{turb}^{2} \approx E_{K,turb}.$$

$$B_{Bell}^{2} \approx \frac{3v_{s}}{2c}(0.1\rho_{1}v_{s}^{2}).$$

$$B_{comov} = \max(B_{p}, B_{turb}, B_{Bell})$$

$$= j_{\nu} - \alpha_{\nu} I_{\nu}.$$

= 1.5 GHz

Estimating $\mathcal{N}_{e}^{'}$

$$\mathcal{N}_{e}^{'}(\gamma^{'})=\mathcal{N}_{0}^{'}\gamma^{'-\mathcal{P}}.$$

$$\mathcal{N}_{0}^{'} = \left(\frac{e^{'}(\mathcal{P}-2)}{1-C_{E}^{'2-\mathcal{P}}}\right)^{\mathcal{P}-1} \left(\frac{1-C_{E}^{'1-\mathcal{P}}}{\frac{\rho^{'}}{m_{p}}(\mathcal{P}-1)}\right)^{\mathcal{P}-2}$$

$$p = 3.0, C'_E = 10^3.$$

Bhattacharjee, Seo, Ryu, Kang, 2023a (in prep)

Fiducial Set: Variation of Radio Image with Jet Power

Bhattacharjee, Seo, Ryu, Kang, 2023a (in prep)

Effects of Jet Density

Bhattacharjee, Seo, Ryu, Kang, 2023a (in prep)

Effects of Scales of Propagation and Jet Radius

Bhattacharjee, Seo, Ryu, Kang, 2023a (in prep)

Effects of Ambient Media: Steeper Background vs Background with Mass-Loading

Bhattacharjee, Seo, Ryu, Kang, 2023a (in prep)

Effects of Ambient Media: King vs Power-Law

2023b (in prep)

Effects of Ambient Media: Mass-Loading

Bhattacharjee, Seo, Ryu, Kang, 2023b (in prep)

Effects of Ambient Media: $Q_j \sim 10^{42} - 10^{45}$ erg/s

Bhattacharjee, Seo, Ryu, Kang, 2023b (in prep)

Effects of Mass-Loading: $Q_i \sim 10^{42} - 10^{45}$ erg/s

Conclusions: P2

- The jets ejected from AGN requires different treatment at different stages of their lifetime.
- Expanded jets, which have reached ICM and have reached mildly relativistic speeds can be treated well within a purely hydrodynamic setup (Massaglia et el. 2016).
- Launching of jets do not require strong magnetic fields and is most likely can have hydrodynamic origin.
- treatment requires further comparative studies.

Jets around AGN

• Jets that transition from ultra-relativistic to mildly relativistic or non-relativistic speeds requires Relativistic Hydrodynamic simulations for correctly capturing their dynamics [Rossi et al. 2008; Perucho et al. 2014; Bhattacharjee et al. 2023 (in prep)].

• Magnetic fields can be important in the acceleration phase of jets, however, radiative acceleration can also be important and this

