Numerical Simulation of Primordial Black Hole Formation

1

Chulmoon Yoo(Nagoya Univ.)

Introduction

Introduction: Primordial BHs [Zeldovich and Novikov(1967), Hawking(1971)]

◎**Remnant of primordial non-linear inhomogeneity** ◎**Trace the inhomogeneity in the early universe** ◎**May provide a fraction of dark matter and BH binaries** ◎**Several aspects**

- **- Inflationary models which provide a number of PBHs**
- **- Theoretical estimation and observational constraints on PBH abundance**
- **- Threshold of PBH formation**
- **- Mass and spin distribution of PBHs**

68th GW and NR Chulmoon Chulmoon

Introduction:PBH formation

◎**Focus on PBH formation in radiation dominated era** ◎**Comoving scale of an inhomogeneity ~ 1***/k*

◎**GR simulation starting from a super-horizon non-linear initial data**

68th GW and NR Chulmoon Yoo

4

Table of Contents

- **1. A very brief review on numerical relativity**
- **2. Cosmological long-wavelength perturbation**
- **3. Simulation of non-spherical PBH formation**
- **4. (Simulation of Type II PBH formation)**

Brief Review of Numerical Relativity

Geometrical Quantities(1)

◎**Line elements**

 $ds^2 = g_{\mu\nu} dx^\mu dx^\nu = -\alpha^2 dt^2 + \gamma_{ij} (dx^i + \beta^i dt) (dx^j + \beta^j dt)$ α : lapse function (1 component) x^i = const. β^i : shift vector(3 components) $\Delta t\beta^i$ γ_{ij} : spatial metric(6 components) $\alpha \Delta t n^{\mu}$ $\Delta t\left(\frac{\partial}{\partial t}\right)$

◎**Unit normal form to** *t=***const hyper-surface**

$$
|n_\mu := -N \partial_\mu t|
$$

◎**Projection tensor(tangent to** *t=***const hyper-surface)**

$$
\gamma_{\mu\nu}:=g_{\mu\nu}+n_\mu n_\nu \qquad n^\mu\gamma_{\mu\nu}=0
$$

7

 $t + \Delta t$

3+1 Decomposition

◎**Extrinsic curvature (~ "time derivative of** *ɤ μν* **")**

$$
K_{\mu\nu}:=-\gamma_\mu^{\,\,\alpha}\nabla_\alpha n_\nu=-\tfrac{1}{2}\mathcal{L}_{\vec{n}}\gamma_{\mu\nu}
$$

 \mathcal{L}_n : Lie derivative assoc. with n^{μ}

◎**Decomposition of Einstein eqs.**

$$
G_{\mu\nu}n^{\mu}n^{\nu} = 8\pi T_{\mu\nu}n^{\mu}n^{\nu} \quad \Leftrightarrow R + K^2 - K_{ij}K^{ij} = 16\pi E
$$

$$
G_{\mu\nu}n^{\mu}\gamma_{i}^{\nu} = 8\pi T_{\mu\nu}n^{\mu}\gamma_{i}^{\nu} \quad \Leftrightarrow D_{j}K_{i}^{j} - D_{i}K = 8\pi p_{i}
$$

Hamiltonian constraint

Momentum constraint

There is no $\partial_t K_{ii}$ term⇒constraint eqs.

$$
G_{\mu\nu}\gamma^{\mu}_{\alpha}\gamma^{\nu}_{\beta}=8\pi T_{\mu\nu}\gamma^{\mu}_{\alpha}\gamma^{\nu}_{\beta}\quad\Leftrightarrow[\left(\partial_{t}-\mathcal{L}_{\beta}\right)K_{ij}=-D_{i}D_{j}N+N\left\{R_{ij}+KK_{ij}-2-2K_{ik}K^{k}_{j}+4\pi\left[(S-E)\gamma_{ij}-2S_{ij}\right]\right]
$$

Evolution eqs. for K_{ij}

Further decomposition is needed for numerical simulation

Conformal 3+1 Decomposition

◎**Spatial metric**

$$
\gamma_{ij} = e^{4\psi} \tilde \gamma_{ij} \quad \text{where } \psi = \ln(\det \gamma), \text{ and } \det \tilde \gamma = \det f \text{ with } f_{ij} \text{ being the flat metric}
$$

◎**Extrinsic curvature**

 $K_{ij}=e^{4\psi}\tilde{A}_{ij}+\frac{1}{3}\mathrm{tr}K\gamma_{ij}\quad\quad\mathrm{where}\ \mathrm{tr}\tilde{A}=0\,,$

 $\tilde{\gamma}, \psi, \,{\rm tr} K, \,\tilde{A}$ are used as independent variables

◎**Gauge degrees of freedom(coord. choice) to choose** *α, βⁱ*

⇒ **need to be fixed by hand**

Baumgarte-Shapiro-Shibata-Nakamura formalism

 \ldots

◎**Spatial metric**

$$
\begin{aligned} &\left(\partial_t - \beta^i\partial_i\right)\psi = \tfrac{1}{6}\psi\left(\partial_i\beta^i - \alpha K\right)\\ &\left(\partial_t - \beta^k\partial_k\right)\tilde{\gamma}_{ij} = -2\alpha\tilde{A}_{ij} + \tilde{\gamma}_{ik}\partial_j\beta^k + \tilde{\gamma}_{jk}\partial_i\beta^k - \tfrac{2}{3}\partial_k\beta^k\tilde{\gamma}_{ij} \end{aligned}
$$

◎**Extrinsic curvature**

$$
\begin{aligned} &\left(\partial_t - \beta^k\partial_k\right)\text{tr} K = \alpha\left(\tilde{A}_{ij}\tilde{A}^{ij} + \tfrac{2}{3}\text{tr} K^2\right) - \triangle\alpha\\ &\left(\partial_t - \beta^k\partial_k\right)\tilde{A}_{ij} = \text{functions of }[\psi,\tilde{\gamma},\text{tr} K,\tilde{A},\tilde{\Gamma},\alpha,\beta,\partial\psi,\triangle\psi,\end{aligned}
$$

©Auxiliary variable for numerical stability $\tilde{\Gamma}^i := -\mathcal{D}_i \tilde{\gamma}^{ij}$

$$
\left(\partial_t - \beta^k\partial_k\right)\tilde{\Gamma}^i = \text{functions of } [\psi,\tilde{\gamma},\text{tr} K,\tilde{A},\tilde{\Gamma},\alpha,\beta,\partial \psi,\triangle \psi,\cdot\cdot\cdot]
$$

◎**Eqs. for gauge fixing**

Shibata, Nakamura(1995) Baumgarte, Shapiro(1999)

17 evolution eqs.

10

Dynamical Gauge Conditions

◎**Time slicing condition(modified version of the "1+log slice")**

 $\left(\partial_t - \beta^i \partial_i\right) \alpha = -2\alpha(\text{tr}K + 3H_b)$

◎**Spatial coordinates(**~**"Hyperbolic Gamma driver")**

 $\left(\partial_t - \beta^k \partial_k\right) \beta^i = \frac{3}{4} B^i$

$$
\left(\partial_t - \beta^k\partial_k\right)B^i = \partial_t\tilde{\Gamma}^i - 3H_bB^i
$$

◎**17 + 1 + 6 = 24 variables for geometry**

Relativistic Hydro-dynamics

◎**Energy momentum tensor**

 $T_{\mu\nu} = (\rho + P)u_{\mu}u_{\nu} + P g_{\mu\nu}$

◎**Lorentz factor for** *n μ*

 $\Gamma = -u^\mu n_\mu$

© Velocity U^{μ} relative to n^{μ}

 $u^{\mu} = \Gamma(n^{\mu} + U^{\mu})$

◎**Rest mass density(***ρ***⁰), specific int. ene.(***ε***)**

 $\rho = \rho_0 (1 + \varepsilon)$

◎**Rest mass density measured by** *n μ*

 $D=\rho_0\Gamma$

◎**"Dynamical" variables**

 $\rho_* := \sqrt{\gamma}D, S_0 := \sqrt{\gamma}E, S_i := \sqrt{\gamma}p_i$

◎**Fluid equations**

$$
\begin{aligned}\n\partial_t \rho_* + \partial_i f_{\rho_*}^i &= 0 \\
\partial_t S_0 + \partial_i f_{S_0}^i &= -S^i \partial_i \alpha + \alpha \sqrt{\gamma} S_{ij} K^{ij} \\
\partial_t S_i + \partial_j f_{S_j}^i &= -S_0 \partial_i \alpha + S_j \partial_i \beta^j - \frac{1}{2} \alpha \sqrt{\gamma} S_{jk} \partial_i \gamma^{jk} \\
\mathbf{with} \qquad f_{\rho_*}^i &= \rho_* V^i = \rho_* (\alpha U^i - \beta^i) \\
f_{\rho_*}^i &= S_0 V^i + \sqrt{\gamma} P(V^i + \beta^i)\n\end{aligned}
$$

 $f_S^i = S_j V^i + \alpha \sqrt{\gamma} \delta_j^i P$

◎**"Primitive" variables**

$$
\rho,\,V^i:=u^i/u^0,\,\varepsilon
$$

Barotropic EoS case

◎**Relation between the variables**

$$
\rho_* = \sqrt{\gamma} \Gamma^{\rho}_{1+\varepsilon}
$$
\n
$$
S_0 = \sqrt{\gamma} [\Gamma^2(\rho + P) - P]
$$
\n
$$
S_i = \sqrt{\gamma} (E + P) U_i = \frac{1}{\alpha} (S_0 + \sqrt{\gamma} P) \gamma_{ij} (V^i + \beta^i)
$$
\n
$$
p^{\mu} p_{\mu} - E^2 - (P - \rho) E + \rho P = 0
$$
\n
$$
\begin{array}{c}\n\text{dynamical var} \\
\text{SUS } P = (\rho, \varepsilon) & \text{primitive var}\n\end{array}
$$

◎**Barotropic EoS** *P=P***(***ρ***)**

 $\rho = \rho$ (dynamical variables)

$$
V^i=\alpha U^i-\beta^i=\alpha \tfrac{\gamma^{ij}S_j}{S_0+\sqrt{\gamma}P}-\beta^i
$$

Equations are closed without $ρ$ **(or equivalently ε)** ⇒**we don't need to solve the continuity eq.**

$$
\rho = \tfrac{1}{2w} \Big[-(1-w)E + \sqrt{E^2(1-w)^2 + 4w(E^2 - p^\mu p_\mu)} \Big]
$$

68th GW and NR Chulmoon Yoo

◎*P=wρ*

Equations for fluid

◎**4(+1) equations**

$$
\begin{aligned} &\partial_t S_0 + \partial_i f^i_{S_0} = - S^i \partial_i \alpha + \alpha \sqrt{\gamma} S_{ij} K^{ij} \\ &\partial_t S_i + \partial_j f^i_{S_j} = - S_0 \partial_i \alpha + S_j \partial_i \beta^j - \tfrac{1}{2} \alpha \sqrt{\gamma} S_{jk} \partial_i \gamma^{jk} \\ &(\partial_t \rho_* + \partial_i f^i_{\rho_*} = 0) \end{aligned}
$$

◎**Scheme for the flux calculation**

A central scheme with MUSCL(Mono Upstream-centered Scheme for Conservation Laws) Kurganov, Tadmor(2000) Shibata, Font(2005)

◎**Totally 24 equations for geometry and 4+1 equations for fluid = 28 +1 equations**

Cosmological long-wavelength perturbation

Introduction:PBH formation

◎**Focus on PBH formation in radiation dominated era**

68th GW and NR Chulmoon Yoo ◎**GR simulation starting from a super-horizon non-spherical initial data** ◎**We approximately solve the equations in the long-wavelength approximation**

Cosmological conformal 3+1 decomposition

◎**Decomposition of metric variables**

$$
ds^2=-\alpha^2 dt^2+\gamma_{ij}(dx^i+\beta^i dt)(dx^j+\beta^j dt)
$$

・**spatial metric**

$$
\begin{array}{ll}\text{partial metric} & \text{reference flat spatial metric} \quad f_{ij} \\[1ex] \gamma_{ij} = \psi^4 a(t)^2 \tilde{\gamma}_{ij} & \tilde{\gamma} := \det(\tilde{\gamma}_{ij}) = f := \det(f_{ij}) \end{array}
$$

・**extrinsic curvature**

$$
K_{ij}=\psi^4a^2\tilde{A}_{ij}+\tfrac{\gamma_{ij}}{3}K
$$

◎**Equations from the definition of the extrinsic curvature**

$$
(\partial_t - \mathcal{L}_\beta) \psi = - \tfrac{2a}{a} \psi + \tfrac{\psi}{6} (-\alpha K + \mathcal{D}_k \beta^k)
$$

$$
(\partial_t - \mathcal{L}_\beta)\tilde{\gamma}_{ij} = -2\tilde{A}_{ij} - \tfrac{2}{3}\tilde{\gamma}_{ij}\mathcal{D}_k\beta^k
$$

68th GW and NR Chulmoon Yoo

 $\mathcal D$: covariant derivative w.r.t. f_{ij}

Field equations

◎**Constraint equations**

$$
\begin{array}{l} \tilde{\triangle} \psi = \frac{\tilde{R}}{8} \psi - 2 \pi \psi^5 a^2 E - \frac{\psi^5 a^2}{8} \Big(\tilde{A}_{ij} \tilde{A}^{ij} - \frac{2}{3} K^2 \Big) \\ \tilde{D}^j \left(\psi^6 \tilde{A}_{ij} \right) - \frac{2}{3} \psi^6 \tilde{D}_i K = 8 \pi p_i \psi^6 \end{array}
$$

⇒*E* **can be calculated from geometrical variables**

⇒*pi* **can be calculated from geometrical variables**

◎**Evolution equations**

$$
\begin{aligned} &(\partial_t - \mathcal{L}_\beta)\tilde{A}_{ij} = \tfrac{1}{a^2\psi^4}\Big[\alpha\left(R_{ij} - \tfrac{8\pi}{a^2\psi^4}S_{ij}\right) - D_iD_j\alpha\Big]_{\mathrm{TL}} + \alpha\left(K\tilde{A}_{ij} - 2\tilde{A}_{ik}\tilde{A}^k_j\right) - \tfrac{2}{3}\tilde{A}_{ij}\mathcal{D}_k\beta^k\\ &(\partial_t - \mathcal{L}_\beta)K = \alpha\left(\tilde{A}_{ij}\tilde{A}^{ij} + \tfrac{1}{3}K^2\right) - D_kD^k\alpha + 4\pi\alpha\left(E + S\right) \end{aligned}
$$

◎**+ energy conservation and relativistic Euler equations for fluid**

Fluid variables

◎**Energy momentum tensor**

$$
T_{\mu\nu}=(\rho+P)u_\mu u_\nu+P g_{\mu\nu}
$$

◎**Equation of state**

$$
w:=P/\rho=1/3
$$

$$
\begin{aligned} \text{\textcolor{red}{\text{O}}Four velocity} \\ u^\mu &= \Gamma(n^\mu + U^\mu) \\ \Gamma &= \left(1-U^iU_i\right)^{-1/2} \end{aligned}
$$

◎**Energy and momentum densities for an Eulerian observer**

$$
E:=T^{\mu\nu}n_{\mu}n_{\nu}=\Gamma^2(\rho+P)-P=\rho(4\Gamma^2-1)/3\\ p_i:=-T^{\mu\nu}n_{\mu}\gamma_{\nu i}=(E+P)U_i=(E+\rho/3)U_i
$$

 \bigcirc *ρ* and U_i can be calculated from $E(\rho, U_i)$ and $p_i^-(\rho, U_i)$ \rightarrow ρ and $U^{}_{i}$ can be given by geometrical variables through constraint equations

Gradient expansion(Anti-Newtonian)

 $[Salopek and Bond(?)$ (1990)]

◎**Assumption 1**

Hb **:=background Hubble**

◎**Assumption 2: flat FLRW for ε→0** \Rightarrow small parameter $\;\epsilon = k/(aH_b)$

$$
\alpha-1=\mathcal{O}(\epsilon),\ \ \beta^i=\mathcal{O}(\epsilon)\ \ \text{ and } \ \ \dot{\tilde{\gamma}}_{ij}=\mathcal{O}(\epsilon)\ \textcolor{red}{\overline{\qquad \qquad }\mathsf{o}(\epsilon) \text{ decays}}\ \ \dot{\tilde{\gamma}}_{ij}=\mathcal{O}(\epsilon^2)
$$

[Lyth,Malik,Sasaki(2005)]

◎**Orders of variables from EoM**

 $\psi = \mathcal{O}(\epsilon^0), U^i = \mathcal{O}(\epsilon), \ \rho = \rho_b(1 + \mathcal{O}(\epsilon^2)), \ \tilde{A}_{ij} = \mathcal{O}(\epsilon^2)$

 $\tilde{\gamma}_{ij} = f_{ij} + \mathcal{O}(\epsilon^2), \alpha = 1 + \mathcal{O}(\epsilon^2), K = 3H_b(1 + \mathcal{O}(\epsilon^2))$

Cosmological long-wavelength solution

◎**Field variables**

◎**Growing mode solutions in the constant-mean-curvature(uniform Hubble) slicing(***κ=***0)**

$$
p_{ij}(x^k) := \frac{1}{\Psi^4} \left[-\frac{2}{\Psi} (\bar{\mathcal{D}}_i \bar{\mathcal{D}}_j \Psi - \frac{1}{3} f_{ij} \bar{\Delta} \Psi) + \frac{6}{\Psi^2} (\bar{\mathcal{D}}_i \Psi \bar{\mathcal{D}}_j \Psi - \frac{1}{3} f_{ij} \bar{\mathcal{D}}^k \Psi \bar{\mathcal{D}}_k \Psi) \right] \quad h_{ij} = -\frac{4}{(3w+5)(3w-1)} p_{ij} \left(\frac{1}{aH_b} \right)^2 + \mathcal{O}(\epsilon^4)
$$
\n
$$
\tilde{A}_{ij} = \frac{2}{3w+5} p_{ij} H_b \left(\frac{1}{aH_b} \right)^2 + \mathcal{O}(\epsilon^4)
$$
\n
$$
\xi = -\frac{1}{6w+6} f \left(\frac{1}{aH_b} \right)^2 + \mathcal{O}(\epsilon^4)
$$
\n
$$
\psi(x^k) \text{ fixes everything}
$$
\n
$$
\delta = f \left(\frac{1}{aH_b} \right)^2 + \mathcal{O}(\epsilon^4)
$$
\n
$$
U_i = \frac{2}{3(w+1)(3w+5)} \partial_i f a \left(\frac{1}{aH_b} \right)^3 + \mathcal{O}(\epsilon^5)
$$
\nWe do not use these expressions

We do not use these expressions (see next slide)

Fluid variables

◎**Constraint equations**

$$
\begin{array}{l} \tilde{\triangle} \psi = \frac{\tilde{R}}{8} \psi - 2 \pi \psi^5 a^2 E - \frac{\psi^5 a^2}{8} \Big(\tilde{A}_{ij} \tilde{A}^{ij} - \frac{2}{3} K^2 \\ \tilde{D}^j \left(\psi^6 \tilde{A}_{ij} \right) - \frac{2}{3} \psi^6 \tilde{D}_i K = 8 \pi p_i \psi^6 \end{array}
$$

◎**Energy and momentum densities for an Eulerian observer**

$$
E:=T^{\mu\nu}n_{\mu}n_{\nu}=\Gamma^2(\rho+P)-P=\rho(4\Gamma^2-1)/3\\ p_i:=-T^{\mu\nu}n_{\mu}\gamma_{\nu i}=(E+P)U_i=(E+\rho/3)U_i
$$

◎*ρ* **and** *Ui* **can be calculated from** *E* **and** *pi*

 \rightarrow ρ and $U^{}_{i}$ can be given by geometrical variables through constraint equations

 \rightarrow We set ρ and $U^{}_{i}$ s.t. constraint equations are exactly satisfied initially

About the numerical code

◎**Originally provided by Hirotada Okawa (for E-eqs and real scalar field w/ periodic BC)**

©COSMOS (秋桜) code by C++ [CY, Hirotada Okawa, Ken-ichi Nakao(1306.1389)]

◎**Basically follows the SACRA**(桜)**code by Fortran**

[Tetsuro Yamamoto, Masaru Shibata, Keisuke Taniguchi(arXiv:0806.4007)]

◎**Inhomogeneous coordinate system has been implemented**

[CY, Taishi Ikeda,Hirotada Okawa(arXiv:1811.00762)]

◎**Fluid evolution code has been implemented**

[CY, Tomohiro Harada,Hirotada Okawa(arXiv:2004.01042)]

◎**1+1 code for spherical systems has been developed based on COSMOS**

[CY, Harada, Hirano, Okawa, Sasaki(arXiv:2112.12335)]

◎**Recently, a mesh refinement procedure has been implemented**

[CY, ongoing]

Simulation of non-spherical PBH formation

[3] 2004.01042 CY, Tomohiro Harada, Hirotada Okawa

Effect of ellipticity

◎**Ellipticity makes black hole formation harder**

Probability for profile

Curvature perturbation

◎**Curvature perturbation**

 $\zeta(x^k) := -2 \ln \Psi(x^k)$

◎**Random Gaussian variable with the power spectrum** P**(***k***)**

⇒ gradient moments $\sigma_n^2 := \int \frac{dk}{k} k^{2n} \mathcal{P}(k) \ll k_*^{2n}$

◎**Taylor expansion around a peak(***∂ i ζ***=0), by taking a principal direction**

$$
\zeta(x^k)=\zeta_0+\tfrac{1}{2}\big(\lambda_1x^2+\lambda_2y^2+\lambda_3z^3\big)+\mathcal{O}(x^3)\qquad\lambda_1\ge\lambda_2\ge\lambda_3\ge0
$$

◎**Useful probability variables**

 $\mu = -\zeta_0/\sigma_0$ $\xi_1 := (\lambda_1 + \lambda_2 + \lambda_3)/\sigma_2$ $\xi_2 := \frac{1}{2}(\lambda_1 - \lambda_3)/\sigma_2$ $\xi_3 := \frac{1}{2}(\lambda_1 - 2\lambda_3 + \lambda_3)/\sigma_2$

©Ellipticity is characterized by ξ₂ and ξ₃

Peak probability

©Peak probability for μ **,** ξ_p **,** ξ_p **,** ξ_3 [Bardeen,Bond,Kaiser,Szalay(1986)] $P(\mu, \vec{\xi}) d\mu d\vec{\xi} = P_1(\mu, \xi_1) P_2(\xi_2, \xi_3) d\mu d\vec{\xi}$ $P_1(\mu,\xi_1)d\mu d\xi_1 = \frac{1}{2\pi} \frac{1}{1-\gamma^2} \exp[-\frac{1}{2}(\mu^2 + \frac{(\xi_1-\gamma\mu)^2}{1-\gamma^2})]d\mu d\xi_1$ $P_2(\xi_2,\xi_3)d\xi_2d\xi_3=\frac{5^{5/2}3^2}{\sqrt{2\pi}}\xi_2(\xi_2^2-\xi_3^2)\exp\bigl[-\frac{5}{2}\bigl(3\xi_2^2+\xi_3^2\bigr)\bigr]d\xi_2d\xi_3$

©No correlation between (*μ*,ξ_{*1*})</sub> and (ξ₂, ξ₃) ⇒

◎**Dimensionless parameter for the extent of the ellipticity**

 $\chi_1 := \xi_2/\xi_1 \quad \chi_2 := \xi_3/\xi_1$

◎**For PBH formation(rare events for very high peaks)**

$ \zeta_0 \sim 1$	$\mu \gg 1$	$\xi_1 \gg 1$	$\chi_1 \ll 1, \chi_2 \ll 1$
high amplitude	$\sigma_0 \ll 1$	Correlation between μ and ξ_1	Chulmoon Yoo

 $\xi_2 \sim 1 \quad \xi_3 \sim 1$

Our initial data setting

◎**Curvature perturbation profile**

 $\zeta = \zeta_0 \exp \left[-\frac{1}{2}(k_1^2 x^2 + k_2^2 y^2 + k_3^2 z^2)\right] \times$ [window function to eliminate the tail] $k_1^2 = \frac{1}{3}(\hat{\xi}_1 + 3\hat{\xi}_2 + \hat{\xi}_3) = \frac{k^2}{3}(1 + 3\chi_1 + \chi_2)$ **We fix** $k^2 = k_1^2 + k_2^2 + k_3^2$ $\lambda_1 = (2k_1^2/k^2 + k_2^2/k^2 - 1)/2 \longrightarrow k_2^2 = \frac{1}{3}(\hat{\xi}_1 - 2\hat{\xi}_2) = \frac{k^2}{3}(1 - 2\chi_2)$ $\chi_2 = (1 - 3k_2^2/k^2)/2$ $k_3^2 = \frac{1}{3}(\hat{\xi}_1 - 3\tilde{\xi}_2 + \hat{\xi}_3) = \frac{k^2}{3}(1 - 3\chi_1 + \chi_2)$

◎**We focus on spheroidal shape initial data given by** $|\hat{\xi}_3| = \hat{\xi}_2 \Leftrightarrow |\chi_2| = \chi_1$

Initial data setting

Parameter settings

◎**Domain for simulation: ⅛ region with reflecting boundary condition** ◎**Initial scale factor** *a* **0=1**

◎**Unit of length: edge length of the cubic domain =** *L*

◎**Scale of the inhomogeneity 1/***k* **=** *L***/10**

◎**Initial Hubble parameter 1/***H***0=***L***/50**

x z y

Initial density profile

◎**Spherical initial data density profile**

$$
\mu=0.8,\ k=10,\ \chi_1=\chi_2=0
$$

◎**Oblate initial data density profile**

$$
\mu=0.8,\ k=10,\ \chi_1=\chi_2=0.1
$$

Note:both are compensated density profiles

Numerical schemes

Summary of schemes (w/o mesh refinement)

◎**Reflection boundary condition**

◎**for geometry**

BSSN + **1+log slice + Gamma driver**

◎**for fluid evolution**

Central scheme with MUSCL method

◎**Resolution**

• Scale-up reference coordinates x^i **related to the Cartesian coord.** X^i **by**

$$
X^i=x^i-\tfrac{S}{1+S}\tfrac{L}{\pi}{\rm sin}\big(\tfrac{\pi}{L}x^i\big)\text{ with }S=15
$$

・**Resolution at the center**

$$
|\Delta X|_{\text{center}} = \frac{1}{1+S} \Delta x = \frac{1}{16} \frac{L}{100} = \frac{L}{1600}
$$

Results:spherical case

Just below the threshold:no horizon formation

◎**Parameters**

$$
|\zeta_0|=0.795,\ \chi_1=\chi_2=0
$$

◎**Bouncing back**

68th GW and NR Chulmoon Yoo

36

Just above the threshold:horizon formation

◎**Parameters**

 1.1 $\overline{1}$ 0.9 apse function **Lapse function** 0.8 0.7 0.6 0.5 $0₄$ 51 0.3 $t = 10l$ $t = 201$ 0.2 $t = 40L$ 0.1 $t = 60L$ $\overline{0}$ 0.2 0.4 0.6 0.8 Ω x/L

 $|\zeta_0| = 0.805, \ \chi_1 = \chi_2 = 0$

Constraint violation

◎**Unfortunately, constraints are significantly violated near the horizon**

◎**But, well suppressed for bouncing case and we can read off the threshold: μ~0.8**

◎**The threshold value is consistent with an accurate spherically symmetric simulation**

Results:non-spherical case

Non spherical spheroidal initial configuration

© $|\zeta_0| = 0.805$

©Horizon formation for χ ₂=0.08</sub> ©Bounce for χ ₂=0.09

◎**Late time configuration near the center is highly spherical in both cases**

68th GW and NR Chulmoon Yoo

Oscillation

◎**Time evolution of the comoving fluid density at fixed spatial points**

◎**Spherical shape is stable and the oscillation can be found**

Conclusion

◎**Ellipticity makes the threshold of the amplitude larger, namely, horizon formation harder**

◎**But,** *χ***2=|***χ***³ |~1 would be needed for a significant effect**

◎**Since** *χ***2=***χ***3<<1 for a realistic situation, the effect would be negligible**

◎**Significant constraint violation**

Constraint violation

◎**Unfortunately, constraints are significantly violated near the horizon**

◎**Much finer resolution near the center is needed**

Mesh refinement

Rough sketch of mesh refinement

[Tetsuro Yamamoto, Masaru Shibata, Keisuke Taniguchi(arXiv:0806.4007)]

◎**Twice finer resolution in a local spacetime patch**

Summary of resolution difference

◎**Resolution in previous simulation**

 \cdot Scale-up reference coordinates x^i related to the Cartesian coord. X^i by

$$
X^i=x^i-\tfrac{S}{1+S}\tfrac{L}{\pi}\mathrm{sin}\big(\tfrac{\pi}{L}x^i\big) \text{ with } S=15
$$

・**Resolution at the center (***Δx=L/100***)**

$$
|\Delta X|_{\text{center}} = \frac{1}{1+S} \Delta x = \frac{1}{16} \frac{L}{100} = \frac{L}{1600}
$$

◎**New simulation with mesh refinement**

• $S = 10, \Delta x = L/60$

・**Two additional layers for the mesh refinement**

$$
\Delta X\vert_{\rm center} = \tfrac{1}{1+S} \times \tfrac{1}{2^2} \times \Delta x = \tfrac{1}{44} \times \tfrac{L}{60} = \tfrac{L}{2640}
$$

Constraint violation w/ mesh refinement

◎**Without mesh refinement**

◎**The mesh refinement reduces the constraint violation!**

68th GW and NR Chulmoon Yoo

◎**With mesh refinement**

47

Towards the simulation of a spinning PBH the simulation of _{inary}
pinning PBH preliminary
very Very

Initial condition

◎**Initial curvature perturbation**

$$
\frac{\frac{\zeta}{\mu}\simeq-1+\frac{1}{2}\big(k_1^2(x+y)^2/2+k_2^2(x-y)^2/2+k_3^2z^2\big)+\mathcal{O}(r^4)}{\frac{\triangle\zeta}{\mu k^2}\simeq1-\frac{1}{2}\big(k_1^2x^2+k_2^2y^2+k_3^2z^2\big)+\mathcal{O}(r^4)}
$$

ζ~**gravitational potential on (x,y) plane Δζ**~**energy density on (x,y) plane**

tidal torque ⇒ **angular momentum transfer** ⇒ **spinning PBH**

Extension of the domain and boundary cond.

◎**1/8 region → 1/4 region**

Initial condition

◎**Initial curvature perturbation**

 $ds^2 \simeq -dt^2 + a(t)^2 e^{-2\zeta(x)} d\vec{x}\cdot d\vec{x}$

$$
\zeta = -\mu \left[1 + \frac{1}{2} \left(k_1^2 (x+y)^2 / 2 + k_2^2 (x-y)^2 / 2 + k_3^2 z^2 \right) + \frac{1}{4} \left(k_1^2 (x+y)^2 / 2 + k_2^2 (x-y)^2 / 2 + k_3^2 z^2 \right)^2 \right.
$$

+
$$
\frac{1}{280} k^2 r^2 \left(9\kappa_1^2 - \kappa_2^2 - \kappa_3^2 \right) x^2 + (\kappa_1^2 - 9\kappa_2^2 + \kappa_3^2) y^2 + (\kappa_1^2 + \kappa_2^2 - 9\kappa_3^2) z^2 \right]^{-1} \exp \left[-\frac{1}{2880} k^6 r^6 \right]
$$

$$
\tfrac{\zeta}{\mu} \simeq -1 + \tfrac{1}{2}\big(k_1^2(x+y)^2/2 + k_2^2(x-y)^2/2 + k_3^2z^2\big) + \mathcal{O}(r^4)
$$

 $\frac{\triangle\zeta}{\mu k^2}\simeq 1-\frac{1}{2}\big(\kappa_1^2 x^2+\kappa_2^2 y^2+\kappa_3^2 z^2\big)+\mathcal{O}(r^4)$

Initial condition

◎**Initial curvature perturbation**

$$
\frac{\frac{\zeta}{\mu}\simeq-1+\frac{1}{2}\big(k_1^2(x+y)^2/2+k_2^2(x-y)^2/2+k_3^2z^2\big)+\mathcal{O}(r^4)}{\frac{\triangle\zeta}{\mu k^2}\simeq1-\frac{1}{2}\big(k_1^2x^2+k_2^2y^2+k_3^2z^2\big)+\mathcal{O}(r^4)}
$$

ζ~**gravitational potential on (x,y) plane Δζ**~**energy density on (x,y) plane**

tidal torque ⇒ **angular momentum transfer** ⇒ **spinning PBH**

Spinning PBH formation?

◎**Non-zero spin parameter…?**

 $A_{\rm Kerr} = 8\pi (M^2 + \sqrt{M^4 - a^2 M^2})$

53

75.5