Numerical Simulation of Primordial Black Hole Formation

Chulmoon Yoo(Nagoya Univ.)

Introduction

Introduction: Primordial BHs [Zeldovich and Novikov(1967), Hawking(1971)]

Remnant of primordial non-linear inhomogeneity
 Trace the inhomogeneity in the early universe
 May provide a fraction of dark matter and BH binaries
 Several aspects

- Inflationary models which provide a number of PBHs
- Theoretical estimation and observational constraints on PBH abundance
- Threshold of PBH formation
- Mass and spin distribution of PBHs

Introduction:PBH formation

©Focus on PBH formation in radiation dominated era **©**Comoving scale of an inhomogeneity $\sim 1/k$

©GR simulation starting from a super-horizon non-linear initial data

68th GW and NR

Chulmoon Yoo

4

Table of Contents

- 1. A very brief review on numerical relativity
- 2. Cosmological long-wavelength perturbation
- 3. Simulation of non-spherical PBH formation
- 4. (Simulation of Type II PBH formation)

Brief Review of Numerical Relativity

Geometrical Quantities(1)

OLine elements

 $ds^{2} = g_{\mu\nu}dx^{\mu}dx^{\nu} = -\alpha^{2}dt^{2} + \gamma_{ij}(dx^{i} + \beta^{i}dt)(dx^{j} + \beta^{j}dt)$ $\alpha : \text{lapse function(1 component)}$ $\beta^{i} : \text{shift vector(3 components)}$ $\gamma_{ij} : \text{spatial metric(6 components)}$ $\bigcirc \text{Unit normal form to } t = \text{const hyper-surface}$

$$n_\mu:=-N\partial_\mu t$$

OProjection tensor(tangent to *t*=const hyper-surface)

$$\gamma_{\mu
u}:=g_{\mu
u}+n_{\mu}n_{
u}$$
 $n^{\mu}\gamma_{\mu
u}=0$

3+1 Decomposition

OExtrinsic curvature (~ "time derivative of $r_{\mu\nu}$ ")

$$K_{\mu
u}:=-\gamma_{\mu}^{\ lpha}
abla_{lpha}n_{
u}=-rac{1}{2}\mathcal{L}_{ec{n}}\gamma_{\mu
u}$$

 $\mathcal{L}_{\vec{n}}$: Lie derivative assoc. with n^{μ}

ODecomposition of Einstein eqs.

$$egin{aligned} G_{\mu
u}n^{\mu}n^{
u} &= 8\pi T_{\mu
u}n^{\mu}n^{
u} &\Leftrightarrow R+K^2-K_{ij}K^{ij}=16\pi E \ G_{\mu
u}n^{\mu}\gamma^{
u}_i &\Leftrightarrow D_jK^j_i-D_iK=8\pi p_i \end{aligned}$$

Hamiltonian constraint

Momentum constraint

There is no $\partial_t K_{ii}$ term \Rightarrow constraint eqs.

$$G_{\mu
u}\gamma^{\mu}_{lpha}\gamma^{
u}_{eta}=8\pi T_{\mu
u}\gamma^{\mu}_{lpha}\gamma^{
u}_{eta} \quad \Leftrightarrow \underbrace{(\partial_t-\mathcal{L}_eta)\,K_{ij}=-D_iD_jN+N\left\{R_{ij}+KK_{ij}-2-2K_{ik}K^k_{\ j}+4\pi\left[(S-E)\gamma_{ij}-2S_{ij}
ight]
ight\}}_{ ext{Evolution eqs. for }\mathsf{K}_{_{ij}}}$$

Further decomposition is needed for numerical simulation

Conformal 3+1 Decomposition

OSpatial metric

$$\gamma_{ij} = e^{4\psi} ilde{\gamma}_{ij} \quad ext{where } \psi = \ln(\det \gamma), ext{ and } \det ilde{\gamma} = \det f ext{ with } f_{ij} ext{ being the flat metric}$$

©Extrinsic curvature

 $K_{ij}=e^{4\psi} ilde{A}_{ij}+rac{1}{3}{
m tr}K\gamma_{ij} \hspace{0.5cm} {
m where} \, {
m tr} ilde{A}=0$

 $ilde{\gamma}, \ \psi, \ {
m tr} K, \ ilde{A}$ are used as independent variables

Object Gauge degrees of freedom(coord. choice) to choose α , β^i

⇒ need to be fixed by hand

Baumgarte-Shapiro-Shibata-Nakamura formalism

...

OSpatial metric

$$egin{aligned} \left(\partial_t - eta^i \partial_i
ight)\psi &= rac{1}{6}\psi\left(\partial_ieta^i - lpha K
ight) \ \left(\partial_t - eta^k \partial_k
ight) ilde{\gamma}_{ij} &= -2lpha ilde{A}_{ij} + ilde{\gamma}_{ik}\partial_jeta^k + ilde{\gamma}_{jk}\partial_ieta^k - rac{2}{3}\partial_keta^k ilde{\gamma}_{ij} \end{aligned}$$

©Extrinsic curvature

$$egin{aligned} &\left(\partial_t-eta^k\partial_k
ight)\mathrm{tr}K&=lpha\left(ilde{A}_{ij} ilde{A}^{ij}+rac{2}{3}\mathrm{tr}K^2
ight)- rianglelpha\ &\left(\partial_t-eta^k\partial_k
ight) ilde{A}_{ij}&=\mathrm{functions}\ \mathrm{of}\left[\psi, ilde{\gamma},\mathrm{tr}K, ilde{A}, ilde{\Gamma},lpha,eta,\partial\psi, riangle\psi, &\psi, \end{aligned}$$

OAuxiliary variable for numerical stability $ilde{\Gamma}^i := -\mathcal{D}_j ilde{\gamma}^{ij}$

$$\left(\partial_t - eta^k \partial_k
ight) ilde{\Gamma}^i = ext{functions of } [\psi, ilde{\gamma}, ext{tr} K, ilde{A}, ilde{\Gamma}, lpha, eta, \partial\psi, riangle\psi, \cdots]$$

©Eqs. for gauge fixing

Shibata, Nakamura(1995) Baumgarte, Shapiro(1999)

17 evolution eqs.

10

68th GW and NR

Chulmoon Yoo

Dynamical Gauge Conditions

©Time slicing condition(modified version of the "1+log slice")

 $\left(\partial_t - eta^i \partial_i
ight) lpha = -2lpha({
m tr} K + 3 H_b)$

@Spatial coordinates(~"Hyperbolic Gamma driver")

 $\left(\partial_t - eta^k \partial_k
ight) eta^i = rac{3}{4} B^i$

$$\left(\partial_t - eta^k \partial_k
ight) B^i = \partial_t ilde{\Gamma}^i - 3 H_b B^i$$

O17 + 1 + 6 = 24 variables for geometry

Relativistic Hydro-dynamics

©Energy momentum tensor

 $T_{\mu
u}=(
ho+P)u_{\mu}u_{
u}+Pg_{\mu
u}$

OLORENTZ factor for n^{μ}

 $\Gamma = - u^\mu n_\mu$

Ovelocity U^{μ} relative to n^{μ}

 $u^\mu = \Gamma(n^\mu + U^\mu)$

ORest mass density(ρ_0), specific int. ene.(ε)

 $ho=
ho_0(1+arepsilon)$

ORest mass density measured by n^{μ}

 $D=
ho_0\Gamma$

O"Dynamical" variables

 $ho_*:=\sqrt{\gamma}D,\ S_0:=\sqrt{\gamma}E,\ S_i:=\sqrt{\gamma}p_i$

OFluid equations

$$egin{aligned} &\partial_t
ho_* + \partial_i f^i_{
ho_*} = 0 \ &\partial_t S_0 + \partial_i f^i_{S_0} = -S^i \partial_i lpha + lpha \sqrt{\gamma} S_{ij} K^{ij} \ &\partial_t S_i + \partial_j f^i_{S_j} = -S_0 \partial_i lpha + S_j \partial_i eta^j - rac{1}{2} lpha \sqrt{\gamma} S_{jk} \partial_i \gamma^{jk} \end{aligned}$$

with $egin{array}{ll} f_{
ho_*}^i &=
ho_*V^i =
ho_*(lpha U^i - eta^i) \ f_{S_0}^i &= S_0V^i + \sqrt{\gamma}P(V^i + eta^i) \ f_{S_j}^i &= S_jV^i + lpha\sqrt{\gamma}\delta_j^iP \end{array}$

O"Primitive" variables

$$ho, \, V^i := u^i/u^0, \, arepsilon$$

68th GW and NR

Chulmoon Yoo

Barotropic EoS case

ORelation between the variables

$$\rho_* = \sqrt{\gamma} \Gamma \frac{\rho}{1+\varepsilon}$$

$$S_0 = \sqrt{\gamma} [\Gamma^2(\rho + P) - P]$$

$$S_i = \sqrt{\gamma} (E+P) U_i = \frac{1}{\alpha} (S_0 + \sqrt{\gamma} P) \gamma_{ij} (V^i + \beta^i)$$

$$p^{\mu} p_{\mu} - E^2 - (P - \rho) E + \rho P = 0$$
FoS $P=(a,\varepsilon)$
primitive var

Observe and a set of a set o

 $\rho = \rho$ (dynamical variables)

$$V^i=lpha U^i-eta^i=lpharac{\gamma^{\imath\jmath}S_j}{S_0+\sqrt{\gamma}P}-eta$$

Equations are closed without ρ_* (or equivalently ϵ) \Rightarrow we don't need to solve the continuity eq.

 $\bigcirc P = w\rho$

$$ho = rac{1}{2w} igg[-(1-w)E + \sqrt{E^2(1-w)^2 + 4w(E^2-p^\mu p_\mu)} igg]$$

Equations for fluid

O4(+1) equations

$$egin{aligned} &\partial_t S_0 + \partial_i f^i_{S_0} = -S^i \partial_i lpha + lpha \sqrt{\gamma} S_{ij} K^{ij} \ &\partial_t S_i + \partial_j f^i_{S_j} = -S_0 \partial_i lpha + S_j \partial_i eta^j - rac{1}{2} lpha \sqrt{\gamma} S_{jk} \partial_i \gamma^{jk} \ &(\partial_t
ho_* + \partial_i f^i_{
ho_*} = 0) \end{aligned}$$

©Scheme for the flux calculation

A central scheme with MUSCL(Mono Upstream-centered Scheme for Conservation Laws) Kurganov, Tadmor(2000) Shibata, Font(2005)

©Totally 24 equations for geometry and 4+1 equations for fluid = 28 +1 equations

Cosmological long-wavelength perturbation

Introduction:PBH formation

©Focus on PBH formation in radiation dominated era

©GR simulation starting from a super-horizon non-spherical initial data ©We approximately solve the equations in the long-wavelength approximation 68th GW and NR Chulmoon

Cosmological conformal 3+1 decomposition

ODecomposition of metric variables

$$ds^2 = -lpha^2 dt^2 + \gamma_{ij} (dx^i + eta^i dt) (dx^j + eta^j dt)$$

spatial metric

-reference flat spatial metric $\ f_{ij}$

$$\gamma_{ij} = \psi^4 a(t)^2 ilde{\gamma}_{ij} \qquad ilde{\gamma} := \det(ilde{\gamma}_{ij}) = f := \det(f_{ij})$$

extrinsic curvature

$$K_{ij}=\psi^4 a^2 ilde{A}_{ij}+rac{\gamma_{ij}}{3}K$$

©Equations from the definition of the extrinsic curvature

$$(\partial_t - \mathcal{L}_eta)\psi = -rac{2a}{a}\psi + rac{\psi}{6}(-lpha K + \mathcal{D}_keta^k)$$

$$(\partial_t - \mathcal{L}_eta) ilde{\gamma}_{ij} = -2 ilde{A}_{ij} - rac{2}{3} ilde{\gamma}_{ij}\mathcal{D}_keta^k$$

68th GW and NR

 ${\cal D}$:covariant derivative w.r.t. f_{ij}

Chulmoon Yoo

Field equations

OConstraint equations

$$egin{aligned} & ilde{\Delta}\psi = rac{ ilde{R}}{8}\psi - 2\pi\psi^5 a^2 E - rac{\psi^5 a^2}{8} \Big(ilde{A}_{ij} ilde{A}^{ij} - rac{2}{3}K^2\Big) \ & ilde{D}^j \left(\psi^6 ilde{A}_{ij}
ight) - rac{2}{3}\psi^6 ilde{D}_i K = 8\pi p_i\psi^6 \end{aligned}$$

 \Rightarrow *E* can be calculated from geometrical variables

 $\Rightarrow p_i$ can be calculated from geometrical variables

©Evolution equations

$$egin{aligned} & (\partial_t - \mathcal{L}_eta) ilde{A}_{ij} = rac{1}{a^2\psi^4} \Big[lpha \left(R_{ij} - rac{8\pi}{a^2\psi^4}S_{ij}
ight) - D_iD_jlpha \Big]_{ ext{TL}} + lpha \left(K ilde{A}_{ij} - 2 ilde{A}_{ik} ilde{A}_j^k
ight) - rac{2}{3} ilde{A}_{ij}\mathcal{D}_keta^k \ & (\partial_t - \mathcal{L}_eta)K = lpha \left(ilde{A}_{ij} ilde{A}^{ij} + rac{1}{3}K^2
ight) - D_kD^klpha + 4\pilpha \left(E + S
ight) \end{aligned}$$

O+ energy conservation and relativistic Euler equations for fluid

Fluid variables

©Energy momentum tensor

$$T_{\mu
u}=(
ho+P)u_{\mu}u_{
u}+Pg_{\mu
u}$$

©Equation of state

$$w:=P/
ho=1/3$$

 $egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} egin{aligned} u^\mu &= \Gamma(n^\mu + U^\mu) \ &\Gamma &= ig(1 - U^i U_iig)^{-1/2} \end{aligned}$

©Energy and momentum densities for an Eulerian observer

$$E:=T^{\mu
u}n_{\mu}n_{
u}=\Gamma^2(
ho+P)-P=
ho(4\Gamma^2-1)/3
onumber \ p_i:=-T^{\mu
u}n_{\mu}\gamma_{
u i}=(E+P)U_i=(E+
ho/3)U_i$$

 $\bigcirc \rho$ and U_i can be calculated from $E(\rho, U_i)$ and $p_i(\rho, U_i)$ $\rightarrow \rho$ and U_i can be given by geometrical variables through constraint equations 68th GW and NR Chulmoon Yoo

Gradient expansion(Anti-Newtonian)

[Salopek and Bond(?)(1990)]

[Tomita(1972,1975)]

OAssumption 1

 $\partial_i \sim k \ll a H_b$ H_b :=background Hubble

OASSUMPTION 2: FLRW for \varepsilon \rightarrow 0

$$lpha-1=\mathcal{O}(\epsilon)$$
, $eta^i=\mathcal{O}(\epsilon)$ and $\dot{ ilde{\gamma}}_{ij}=\mathcal{O}(\epsilon)$ —O(ϵ) decays $\dot{ ilde{\gamma}}_{ij}=\mathcal{O}(\epsilon^2)$

 \Rightarrow small parameter $\epsilon = k/(aH_b)$

[Lyth,Malik,Sasaki(2005)]

Orders of variables from EoM

 $\psi = \mathcal{O}(\epsilon^0), \ U^i = \mathcal{O}(\epsilon), \
ho =
ho_b(1 + \mathcal{O}(\epsilon^2)), \ ilde{A}_{ij} = \mathcal{O}(\epsilon^2)$

 $ilde{\gamma}_{ij} = f_{ij} + \mathcal{O}(\epsilon^2), lpha = 1 + \mathcal{O}(\epsilon^2), \ K = 3H_b(1 + \mathcal{O}(\epsilon^2))$

Cosmological long-wavelength solution

OField variables

$$\psi(t,x^k)=\Psi(x^k)(1+\xi(t,x^k)), (\delta)=rac{
ho-
ho_b}{
ho_b}, (h_{ij})= ilde{\gamma}_{ij}-f_{ij}, (\chi)=lpha-1, (\kappa)=rac{K-K_b}{K_b}, (ilde{A}_i)$$

OGrowing mode solutions in the constant-mean-curvature(uniform Hubble) slicing($\kappa=0$)

$$p_{ij}(x^k) := \frac{1}{\Psi^4} \Big[-\frac{2}{\Psi} (\bar{\mathcal{D}}_i \bar{\mathcal{D}}_j \Psi - \frac{1}{3} f_{ij} \bar{\bigtriangleup} \Psi) + \frac{6}{\Psi^2} (\bar{\mathcal{D}}_i \Psi \bar{\mathcal{D}}_j \Psi - \frac{1}{3} f_{ij} \bar{\mathcal{D}}^k \Psi \bar{\mathcal{D}}_k \Psi) \Big] - \begin{bmatrix} h_{ij} = -\frac{4}{(3w+5)(3w-1)} p_{ij} \left(\frac{1}{aH_b}\right)^2 + \mathcal{O}(\epsilon^4) \\ \tilde{A}_{ij} = \frac{2}{3w+5} p_{ij} H_b \left(\frac{1}{aH_b}\right)^2 + \mathcal{O}(\epsilon^4) \\ \xi = -\frac{1}{3w+3} f \left(\frac{1}{aH_b}\right)^2 + \mathcal{O}(\epsilon^4) \\ \xi = -\frac{1}{6w+6} f \left(\frac{1}{aH_b}\right)^2 + \mathcal{O}(\epsilon^4) \\ \begin{bmatrix} \delta = f \left(\frac{1}{aH_b}\right)^2 + \mathcal{O}(\epsilon^4) \\ U_i = \frac{2}{3(w+1)(3w+5)} \partial_i f a \left(\frac{1}{aH_b}\right)^3 + \mathcal{O}(\epsilon^5) \end{bmatrix} \\ \rightarrow We \text{ do not use these expressions}$$

(see next slide)

68th GW and NR

Chulmoon Yoo

Fluid variables

OConstraint equations

$$egin{aligned} & ilde{\Delta}\psi = rac{ ilde{R}}{8}\psi - 2\pi\psi^5 a^2 E - rac{\psi^5 a^2}{8} \Big(ilde{A}_{ij} ilde{A}^{ij} - rac{2}{3}K^2 \ & ilde{D}^j \left(\psi^6 ilde{A}_{ij}
ight) - rac{2}{3}\psi^6 ilde{D}_i K = 8\pi p_i\psi^6 \end{aligned}$$

©Energy and momentum densities for an Eulerian observer

$$egin{aligned} E &:= T^{\mu
u} n_{\mu} n_{
u} = \Gamma^2 (
ho + P) - P = eta (4\Gamma^2 - 1)/3 \ p_i &:= -T^{\mu
u} n_{\mu} \gamma_{
u i} = (E + P) U_i = (E +
ho/3) U_i \end{aligned}$$

 $\bigcirc \rho$ and U_i can be calculated from E and p_i

 $\rightarrow \rho$ and U_i can be given by geometrical variables through constraint equations

 \rightarrow We set ρ and U_i s.t. constraint equations are exactly satisfied initially

68th GW and NR

Chulmoon Yoo

About the numerical code

Originally provided by Hirotada Okawa (for E-eqs and real scalar field w/ periodic BC)

◎COSMOS(秋桜)code by C++

[CY, Hirotada Okawa, Ken-ichi Nakao(1306.1389)]

◎Basically follows the SACRA(桜)code by Fortran

[Tetsuro Yamamoto, Masaru Shibata, Keisuke Taniguchi(arXiv:0806.4007)]

OInhomogeneous coordinate system has been implemented

[CY, Taishi Ikeda, Hirotada Okawa (arXiv:1811.00762)]

OFluid evolution code has been implemented

[CY, Tomohiro Harada, Hirotada Okawa (arXiv:2004.01042)]

O1+1 code for spherical systems has been developed based on COSMOS

[CY, Harada, Hirano, Okawa, Sasaki(arXiv:2112.12335)]

ORecently, a mesh refinement procedure has been implemented

[CY, ongoing]

Simulation of non-spherical PBH formation

[3] 2004.01042 CY, Tomohiro Harada, Hirotada Okawa

68th GW and NR

Chulmoon Yoo

Effect of ellipticity

©Ellipticity makes black hole formation harder

Probability for profile

Curvature perturbation

©Curvature perturbation

 $\zeta(x^k):=-2\ln\Psi(x^k)$

ORandom Gaussian variable with the power spectrum $\mathcal{P}(k)$

 \Rightarrow gradient moments $\sigma_n^2 := \int rac{dk}{k} k^{2n} \mathcal{P}(k) \ll k_*^{2n}$

OTaylor expansion around a peak($\partial_{i}\zeta=0$), by taking a principal direction

$$\zeta(x^k) = \zeta_0 + rac{1}{2}ig(\lambda_1 x^2 + \lambda_2 y^2 + \lambda_3 z^3ig) + \mathcal{O}(x^3) \qquad \lambda_1 \geq \lambda_2 \geq \lambda_3 \geq 0$$

OUseful probability variables

 $\mu = -\zeta_0/\sigma_0$ $\xi_1 := (\lambda_1 + \lambda_2 + \lambda_3)/\sigma_2$ $\xi_2 := rac{1}{2}(\lambda_1 - \lambda_3)/\sigma_2$ $\xi_3 := rac{1}{2}(\lambda_1 - 2\lambda_3 + \lambda_3)/\sigma_2$

OEIII Delipticity is characterized by ξ_2 and ξ_3

68th GW and NR

Chulmoon Yoo

Peak probability

OPeak probability for μ , ξ_1 , ξ_2 , ξ_3 [Bardeen,Bond,Kaiser,Szalay(1986)] $P(\mu, \vec{\xi}) d\mu d\vec{\xi} = P_1(\mu, \xi_1) P_2(\xi_2, \xi_3) d\mu d\vec{\xi}$ $P_1(\mu, \xi_1) d\mu d\xi_1 = \frac{1}{2\pi} \frac{1}{1-\gamma^2} \exp[-\frac{1}{2}(\mu^2 + \frac{(\xi_1 - \gamma\mu)^2}{1-\gamma^2})] d\mu d\xi_1$ $P_2(\xi_2, \xi_3) d\xi_2 d\xi_3 = \frac{5^{5/2} 3^2}{\sqrt{2\pi}} \xi_2(\xi_2^2 - \xi_3^2) \exp[-\frac{5}{2}(3\xi_2^2 + \xi_3^2)] d\xi_2 d\xi_3$

 $\xi_2 \sim 1 \quad \xi_3 \sim 1$ **ONO correlation between** (μ, ξ_1) and $(\xi_2, \xi_3) \Rightarrow$ **ODimensionless parameter for the extent of the ellipticity** $\chi_1 := \xi_2 / \xi_1 \quad \chi_2 := \xi_3 / \xi_1$ **OFOR PBH formation(rare events for very high peaks)** $\begin{array}{c|c} |\zeta_0| \sim 1 & & \mu \gg 1 & & \xi_1 \gg 1 \\ \hline & & \uparrow & & \uparrow & \\ \sigma_0 \ll 1 & & \text{Correlation between } \mu \text{ and } \xi_1 \end{array}$ $\rightarrow \chi_1 \ll 1, \ \chi_2 \ll 1$ Chulmoon 68th GW and NR

Our initial data setting

OCurvature perturbation profile

$$\begin{split} \zeta &= \zeta_0 \exp\left[-\frac{1}{2} \left(k_1^2 x^2 + k_2^2 y^2 + k_3^2 z^2\right)\right] \times \left[\text{window function to eliminate the tail}\right] \\ \text{We fix } k^2 &= k_1^2 + k_2^2 + k_3^2 \qquad \qquad k_1^2 = \frac{1}{3} \left(\hat{\xi}_1 + 3\hat{\xi}_2 + \hat{\xi}_3\right) = \frac{k^2}{3} (1 + 3\chi_1 + \chi_2) \\ \chi_1 &= (2k_1^2/k^2 + k_2^2/k^2 - 1)/2 \qquad \longrightarrow \qquad k_2^2 = \frac{1}{3} \left(\hat{\xi}_1 - 2\hat{\xi}_2\right) = \frac{k^2}{3} (1 - 2\chi_2) \\ \chi_2 &= (1 - 3k_2^2/k^2)/2 \qquad \qquad k_3^2 = \frac{1}{3} \left(\hat{\xi}_1 - 3\tilde{\xi}_2 + \hat{\xi}_3\right) = \frac{k^2}{3} (1 - 3\chi_1 + \chi_2) \end{split}$$

©We focus on spheroidal shape initial data given by $|\hat{\xi}_3| = \hat{\xi}_2 \Leftrightarrow |\chi_2| = \chi_1$

Initial data setting

Parameter settings

Obmain for simulation: $\frac{1}{8}$ region with reflecting boundary condition Olnitial scale factor $a_0 = 1$

OUnit of length: edge length of the cubic domain = L

OScale of the inhomogeneity 1/k = L/10

OInitial Hubble parameter $1/H_0 = L/50$

z

Initial density profile

OSpherical initial data density profile

$$\mu=0.8,\ k=10,\ \chi_1=\chi_2=0$$

Oblate initial data density profile

$$\mu=0.8,\ k=10,\ \chi_1=\chi_2=0.1$$

Note:both are compensated density profiles

Numerical schemes

Summary of schemes (w/o mesh refinement)

OReflection boundary condition

Ofor geometry

BSSN + 1+log slice + Gamma driver

Ofor fluid evolution

Central scheme with MUSCL method

OResolution

-Scale-up reference coordinates x^i related to the Cartesian coord. X^i by

$$X^i = x^i - rac{S}{1+S} rac{L}{\pi} \mathrm{sin}ig(rac{\pi}{L} x^iig) ext{ with } S = 15$$

Resolution at the center

$$\Delta X|_{ ext{center}} = rac{1}{1+S} \Delta x = rac{1}{16} rac{L}{100} = rac{L}{1600}$$

Results:spherical case

Just below the threshold:no horizon formation

OParameters

$$|\zeta_0|=0.795,\ \chi_1=\chi_2=0$$

OBouncing back

68th GW and NR

Chulmoon Yoo

36

Just above the threshold:horizon formation

OParameters

1.1 0.9 -apse function 0.8 0.7 0.6 0.5 0.4 51 0.3 t = 10Lt= 20L 0.2 t= 40L 0.1 t= 60L 0 0.2 0.4 0.6 0.8 0 x/L

 $|\zeta_0|=0.805,\ \chi_1=\chi_2=0$

high density low density

68th GW and NR

Constraint violation

OUnfortunately, constraints are significantly violated near the horizon

Results:non-spherical case

Non spherical spheroidal initial configuration

 $|\zeta_0| = 0.805$

Observe and the set of a set

OLate time configuration near the center is highly spherical in both cases

68th GW and NR

Observe and a set of a set o

Oscillation

©Time evolution of the comoving fluid density at fixed spatial points

OSpherical shape is stable and the oscillation can be found

68th GW and NR

Conclusion

©Ellipticity makes the threshold of the amplitude larger, namely, horizon formation harder

OBut, $\chi_2 = |\chi_3| \sim 1$ would be needed for a significant effect

OSince $\chi_2 = \chi_3 <<1$ for a realistic situation, the effect would be negligible

OSignificant constraint violation

Constraint violation

OUnfortunately, constraints are significantly violated near the horizon

OMuch finer resolution near the center is needed

68th GW and NR

Mesh refinement

Rough sketch of mesh refinement

[Tetsuro Yamamoto, Masaru Shibata, Keisuke Taniguchi(arXiv:0806.4007)]

OTwice finer resolution in a local spacetime patch

Summary of resolution difference

OResolution in previous simulation

-Scale-up reference coordinates x^i related to the Cartesian coord. X^i by

$$X^i = x^i - rac{S}{1+S} rac{L}{\pi} {
m sin}ig(rac{\pi}{L} x^iig) ext{ with } S = 15$$

•Resolution at the center ($\Delta x = L/100$)

$$\Delta X|_{ ext{center}} = rac{1}{1+S} \Delta x = rac{1}{16} rac{L}{100} = rac{L}{1600}$$

ONew simulation with mesh refinement

• $S = 10, \Delta x = L/60$

•Two additional layers for the mesh refinement

$$\Delta X|_{ ext{center}} = rac{1}{1+S} imes rac{1}{2^2} imes \Delta x = rac{1}{44} imes rac{L}{60} = rac{L}{2640}$$

Constraint violation w/ mesh refinement

OWithout mesh refinement

OThe mesh refinement reduces the constraint violation!

OWith mesh refinement

68th GW and NR

Chulmoon Yoo

90

Towards the simulation of any a spinning PBH preliminary Nerv

Initial condition

OInitial curvature perturbation

$$egin{split} rac{\zeta}{\mu}&\simeq -1+rac{1}{2}ig(k_1^2(x+y)^2/2+k_2^2(x-y)^2/2+k_3^2z^2ig)+\mathcal{O}(r^4)\ rac{ riangle \zeta}{\mu k^2}&\simeq 1-rac{1}{2}ig(k_1^2x^2+k_2^2y^2+k_3^2z^2ig)+\mathcal{O}(r^4) \end{split}$$

 ζ ~gravitational potential on (x,y) plane

Chulmoon Yoo

Extension of the domain and boundary cond.

O1/8 region \rightarrow 1/4 region

Initial condition

OInitial curvature perturbation

 $ds^2 \simeq -dt^2 + a(t)^2 e^{-2\zeta(x)} dec x \cdot dec x$

$$\begin{aligned} \zeta &= -\mu \Big[1 + \frac{1}{2} \left(k_1^2 (x+y)^2 / 2 + k_2^2 (x-y)^2 / 2 + k_3^2 z^2 \right) + \frac{1}{4} \left(k_1^2 (x+y)^2 / 2 + k_2^2 (x-y)^2 / 2 + k_3^2 z^2 \right)^2 \\ &+ \frac{1}{280} k^2 r^2 \left(9\kappa_1^2 - \kappa_2^2 - \kappa_3^2 \right) x^2 + (\kappa_1^2 - 9\kappa_2^2 + \kappa_3^2) y^2 + (\kappa_1^2 + \kappa_2^2 - 9\kappa_3^2) z^2 \Big]^{-1} \exp \left[-\frac{1}{2880} k^6 r^6 \right] \end{aligned}$$

$$rac{\zeta}{\mu}\simeq -1+rac{1}{2}ig(k_1^2(x+y)^2/2+k_2^2(x-y)^2/2+k_3^2z^2ig)+\mathcal{O}(r^4)$$

 $rac{ riangle \zeta}{\mu k^2}\simeq 1-rac{1}{2}ig(\kappa_1^2x^2+\kappa_2^2y^2+\kappa_3^2z^2ig)+\mathcal{O}(r^4)$

68th GW and NR

Initial condition

OInitial curvature perturbation

$$egin{split} rac{\zeta}{\mu}&\simeq -1+rac{1}{2}ig(k_1^2(x+y)^2/2+k_2^2(x-y)^2/2+k_3^2z^2ig)+\mathcal{O}(r^4)\ rac{ riangle \zeta}{\mu k^2}&\simeq 1-rac{1}{2}ig(k_1^2x^2+k_2^2y^2+k_3^2z^2ig)+\mathcal{O}(r^4) \end{split}$$

 ζ ~gravitational potential on (x,y) plane

Chulmoon Yoo

Spinning PBH formation?

ONON-zero spin parameter...?

 $A_{
m Kerr}=8\pi(M^2+\sqrt{M^4-a^2M^2})$