

Overview of Nuclear Astrophysics : In Search of the Origin of Elements

Ewha Womans University / CENS, IBS Chaeyeon Park

69TH WORKSHOP ON GRAVITATIONAL WAVES AND NUMERICAL RELATIVITY

Part 1. What is Nuclear Astrophysics?

Periodic Table of Elements

57	58	59	60	61	62	63	64	65	66	67	68	69	70	71
La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
Lanthanum 138.9	Cerium 140.1	Praseodymium 140.9	Neodymium 144.2	Promethium (145)	Samarium 150.4	Europium 152.0	Gadolinium 157.2	Terbium 158.9	Dysprosium 162.5	Holmium 164.9	Erbium 167.3	Thulium 168.9	Ytterbium 173.0	Lutetium 175.0
89	90	91	92	93	94	95	96	97	98	99	100	101	102	103
Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
Actinium (227)	Thorium 232.0	Protactinium 231.0	Uranium 238.0	Neptunium (237)	Plutonium (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermium (257)	Mendelevium (258)	Nobelium (259)	Lawrencium (262)

American Chemical Society

69th Workshop on Gravitational Waves and Numerical Relativity

									18	
78 — Atomic Number										
D4									He	
PL-	— Symbol			13	14	15	16	17	Helium 4.003	
Platinum —	— Name			5	6	7	8	9	10	
195.1 —	— Average	Atomic Mass	5	B	C	N	0	F	Ne	
				Boron 10.81	Carbon 12.01	Nitrogen 14.01	Oxygen 16.00	Fluorine 19.00	Neon 20.18	
				13	14	15	16	17	18	
				A	Si	Ρ	S	C	Ar	
9	10	11	12	Aluminium 26.98	Silicon 28.09	Phosphorus 30.97	Sulfur 32.06	Chlorine 35.45	Argon 39.95	
27	28	29	30	31	32	33	34	35	36	
Со	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr	
Cobalt 58.93	Nickel 58.69	Copper 63.55	Zinc 65.39	Gallium 69.72	Germanium 72.64	Arsenic 74.92	Selenium 78.96	Bromine 79.90	Krypton 83.79	
45	46	47	48	49	50	51	52	53	54	
Rh	Pd	Ag	Cd	In	Sn	Sb	Те		Xe	
Rhodium 102.9	Palladium 106.4	Silver 107.9	Cadmium 112.4	Indium 114.8	Tin 118.7	Antimony 121.8	Tellurium 127.6	lodine 126.9	Xenon 131.3	
77	78	79	80	81	82	83	84	85	86	
lr	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn	
Iridium 192.2	Platinum 195.1	Gold 197.0	Mercury 200.5	Thallium 204.38	Lead 207.2	Bismuth 209.0	Polonium (209)	Astatine (210)	Radon (222)	
109	110	111	112	113	114	115	116	117	118	
Mt	Ds	Rg	Cn	Nh	FI	Mc	Lv	Ts	Og	
Meitnerium (276)	Darmstadtium (281)	Roentgenium (280)	Copernicium (285)	Nihonium (284)	Flerovium (289)	Moscovium (288)	Livermorium (293)	Tennessine (294)	Oganesson (294)	

www.acs.org/outreach

Chart of Nuclides

The 11 Greatest Questions of Physics

Question 1. What is dark matter? Question 2. What is dark energy? Question 4. Do neutrinos have mass? Question 8. Are protons unstable? Question 9. What is gravity? Question 10. Are there additional dimensions? Question 11. How did the universe begin?

69th Workshop on Gravitational Waves and Numerical Relativity

Question 3. How were the heavy elements from iron to uranium made?

- Question 5. Where do ultrahigh-energy particles come from?
- Question 6. Is a new theory of light and matter needed to explain what happens at very high energies and temperatures?
- Question 7. Are there new states of matter at ultrahigh temperatures and densities?

Synthesis of the Light Elements

Proton-proton chain

69th Workshop on Gravitational Waves and Numerical Relativity

Nucleosynthesis Processes

69th Workshop on Gravitational Waves and Numerical Relativity

r-process Simulation

69th Workshop on Gravitational Waves and Numerical Relativity

Nucleosynthesis Processes

69th Workshop on Gravitational Waves and Numerical Relativity

X-Ray Bursts

69th Workshop on Gravitational Waves and Numerical Relativity

• Binary star composed of:

- an accreting compact object (commonly neutron star)
- a main sequence companion 'donor' star

• ⁴He capture reactions process (ap-process):

- ${}^{15}\text{O} + {}^{4}\text{He} \rightarrow {}^{18}\text{Ne} + \gamma \rightarrow {}^{18}\text{Ne} + {}^{4}\text{He} \rightarrow {}^{21}\text{Na} + p$
- ${}^{14}\text{O} + {}^{4}\text{He} \rightarrow {}^{18}\text{Ne} \rightarrow {}^{17}\text{F} + p$

• Rapid proton capture process (rp-process):

- $^{13}N + p \rightarrow ^{14}O + \gamma$
- ${}^{17}F + p \rightarrow {}^{18}Ne + \gamma$
- Proton captures by Ne, Mg, Na and so on

Nuclear Physics - Astrophysics Connection

69th Workshop on Gravitational Waves and Numerical Relativity

Role of Nuclear Physics

- Nucleosynthesis process can explain the observation. •
 - → Nuclear Physics plays an important role!
 - \rightarrow mass, Q-value, T_{1/2}, level densities and reaction rates

Calculated light curves of X-ray burst within a factor of 100 R. H. Cyburt *et al.*, 2016

69th Workshop on Gravitational Waves and Numerical Relativity

Uncertainties of nuclear properties are huge!

Monte-Carlo variations of (α, n) rates within a factor 100 Bliss et al.

Nuclear Astrophysics

Tries to find the origin of elements

Nuclear Physics

- mass
- excitation energies
- spins and parities
- life times

69th Workshop on Gravitational Waves and Numerical Relativity

•

Astrophysics

- Nucleosynthesis
- abundance patterns
- evolution of star

•

explosion mechanism

Part 2. The ¹⁴O(a,p)¹⁷F Experiment

Motivation

- One of the most important (α, p) cross sections in X-ray bursts
- Alternate break-out path from the hot CNO cycle to the rapid proton burning (rp-process).

- Large uncertainty
 - Previous cross section measurements at high energy range (2 MeV $\leq E_{cm} \leq$ 2.8 MeV) show large disagreements.
 - Results at low energy range (1 MeV \leq $E_{cm} \leq 1.5$ MeV) with large error bars have to be confirmed from another study.

2023.06.14 - 15 Chaeyeon Park

1.8

1.6

1.4

1.2

 $-140(\alpha,p)$ Up

 $-140(\alpha,p)$ Down

s-1)

ergs

Active Target Time Projection Chamber (AT-TPC)

- Thick target inverse kinematics
- Tracking charged particles: vertex point, energy, angle \rightarrow excitation function

<u>Texas Active Target TPC ver 2 (TexAT_v2)</u>

69th Workshop on Gravitational Waves and Numerical Relativity

- Originally build from Texas A&M University
- Consist of ...
 - Solid detector arrays for measuring energy
 - : Si + CsI(TI) with PIN diode X6 + CsI(TI) with SiPM
 - Micromegas + GEM for tracking
 - Field cage for applying uniform electric field
 - Beam monitor
 - Wing chamber
 - Data acquisition system
- Can handle beam intensity up to 10⁵ pps (tested)

Experimental Setup

CRIB @ RIKEN, Japan CNS Radio-Isotope Beam Separator

F0 target: H₂ gas (90K, 80 mm, ~500 Torr)

69th Workshop on Gravitational Waves and Numerical Relativity

- Secondary target

TexAT chamber

Preliminary Results

69th Workshop on Gravitational Waves and Numerical Relativity

- The experiment measuring the cross section of astrophysical important reaction, ¹⁴O(α ,p)¹⁷F, is performed in CRIB, RIKEN.
 - Data transportation is done. (30 TB!)
- Analysis is on-going.
 - Find the reaction vertex and extract the cross section.
 - Calculate the reaction rate and extrapolate to the full range of Gamow window.
- Study of the impact of reaction rate on astrophysics simulation is going on the other hand.

Outlook

Collaborator List

CENS, IBS	S. Ahn, S. Bae, S.M. Cha, K. I. Hahn, D. Kim, Y.H. Kim, B. Moon								
CNS	T. W. Chillery, S. Hayakawa, N. Imai, N. Kitamura, K. Okawa, H. Yamaguchi, Q. Zhang								
TAMU	M. Barbui, J. Bishop, E. Koshchiy, C. E. Parker, G. V. Rogachev, M. Roosa								
SKKU	K.Y. Chae, G.M. Gu, M.J. Kim, S.H. Kim, C.H. Kim University								
Korea University	S. Do, B. Hong, A. Kim			TITech	H. Lee, T. Nakamura				
RIKEN Nishina Center	S. Kubono, M. Sasano	ANL	M. L. Avila	Université Libre de Bruxelles	M. Sferrazza				
University of Notre Dame	D. W. Bardayan	McMaster University	A. Chen	Tohoku University	N. Iwasa				
INFN	M. La Cognata	Van Lang University	N. N. Duy	TUNL	A. Psaltis				

2023.06.14 - 15 Chaeyeon Park

Thank you