GRAVITATIONAL WAVE DETECTION

BY MICROWAVE RESONANT CAVITY

asia pacific center for theoretical physics

Danho Ahn (IBS-CAPP)

KA·I 한국천문연구원

Center for Axion and Precision Physics Research, Institute of Basic Science, Daejeon 34051, Republic of Korea

KAIST

1971 국과학기학

Gravitational Wave

ΚΛ

30C

KAIST

 $(\mathbf{i}_{b}s)$

Gravitational Wave Search

72TH GWNR WORKSHOP

Gravitational Wave Search

Astrophys.J.Lett. 956 (2023) 1, L3

KΛ

90C

Gravitational Wave Search

(Information of the second sec

Gravitational Wave Search

KA POCLO (10) 72TH GWNR WORKSHOP

High Frequency Gravitational Wave Sources

Coherent

Stochastic

Living. Rev. Relativ. 24, 4 (2021).

Ultra High Frequency Gravitational Wave Sources

Coherent (Transient)

Miller, M.C., Yunes, N. Nature 568, 469–476 (2019).

Stochastic

https://physics.aps.org/articles/v13/113

Ultra High Frequency Gravitational Wave Sources

Coherent (Monochromatic)

Stochastic

https://physics.aps.org/articles/v13/113

JOC

Ultra High Frequency Gravitational Wave Sources

Coherent (Monochromatic)

🚎 🚯 72TH GWNR WORKSHOP

Axion Signal

- > QCD have non-trivial vacuum structure (θ vacuum). Weinberg, PRD 11 (1975). t'Hooft, PRL 37 (1976).
- > The θ vacuum introduces CP violating $'\theta_{QCD}$ term' non-perturbatively.

$$S_{\theta_{QCD}} = \int \frac{g^2 \theta_{QCD}}{32\pi^2} G^{a\mu\nu} \tilde{G}^a_{\mu\nu} d^4x \neq 0$$

- > ' θ_{CKM} term' also can be introduced by chiral rotation with CKM matrix.
- > $\theta_{tot} = \theta_{QCD} + \theta_{CKM}$ is physical and can induce neutron EDM.
- > The current experimental limit $|\theta_{tot}| < 10^{-10}$ raise naturalness problem.

$$d_n \approx 2.4 \times 10^{-16} |\theta_{tot}| e \cdot cm$$

72TH GWNR WORKSHOP

Axion

 \triangleright PQ symmetry breaking of additional scalar particle Φ can dynamically vanish θ

term. Peccei & Quinn, PRL 38 (1977), Weinberg, PRL 40 (1978), Wilczek, PRL 40 (1978).

- > Axion is a pseudo-Goldstone boson originated from $U(1)_{PQ}$ symmetry breaking.
- > The high-mass PQWW axion model was ruled out by accelerator experiments.
- Invisible axion models introduced low-mass axions.

Edwards *et al.*, PRL 48 (1982). Sivertz *et al.*, PRD 26 (1982). Alam *et al.*, PRD 27 (1983).

KSVZ: Kim, PRL 43 (1979). Shifman, Vainshtein, and Zakharov, Nuc. Phys. B, 166 (1980). DFSZ: Dine, Fischler, and Srednicki, Phys. Lett. B, 104 (1981). Zhitnitski, Sov. J. Nucl. Phys. 31 (1980).

Axion

Invisible axion models

<**i**b^s ▶

KAIST

30C

- Kim-Shiftman-Vainshtein-Zakharov (KSVZ) model
 - ✓ Heavy quark (q) + Yukawa interaction between Φ and Heavy quark
- Dine-Fisheler-Srednicki-Zhitnitsky (DFSZ) model
 - ✓ PQWW axion + Higher order Yukawa interaction between additional Higgs and SM quarks

Axion Dark Matter

> Axion is a cold dark matter candidate.

Marsh, Phys. Rep. 643 (2016).

- Axion cosmology suggests the misalignment production mechanism.
- Small mass invisible axions can be a cold dark matter. Pre-inflationary: $10^{-6} < m_a < 10^{-2} \text{eV}$ Post-inflationary: $10^{-5} \text{ eV} < m_a$
- Axion is considered virialized classical particles in a galactic scale. Turner, PRD 42 (1990).

• Axion follows Maxwell-Boltzmann distribution

Axion is wave-like in a laboratory scale. $m_a = 10 \,\mu\text{eV}, \rho_{DM} \approx 0.45 \,\text{GeV/cm}^3$

Cavity Haloscope Experiment for Dark Matter Axion Search

Cavity Experiment for Coherent Gravitational Wave Detection

Main Axion eXperiment (MAX) at CAPP

- > CAPP's flagship experiment to search for axion above 1GHz
- Dine-Fischler-Srednicki-Zhitnitsky (DFSZ) sensitivity

Analysis Result

arXiv:2402.12892

KΛ

90C

KAIST

Analysis Result

Possible Upgrades

- ➢ ReBCO have low surface resistance in a high magnetic field.
- > Two contributors to low surface resistance.
 - Low vortex number density: $H_{c2} > 100 \text{ T}$ (ReBCO)
 - Vortex pinning is relevant even in a high frequency: $\omega_{dp} = 10 100 \text{ GHz}$ (ReBCO)

Possible Upgrades

KV (I

Possible Upgrades

High Frequency Gravitational Wave Sources - Monochromatic

High Frequency Gravitational Wave Sources - Monochromatic

High Frequency Gravitational Wave Sources - Monochromatic

FermiLab MAGO 2.0

High Frequency Gravitational Wave Sources - Monochromatic

arXiv:2303.01518

K apcto (1) 72TH GWNR WORKSHOP

High Frequency Gravitational Wave Sources - Monochromatic

FermiLab MAGO 2.0

High Frequency Gravitational Wave Sources - Transient

High Frequency Gravitational Wave Sources - Transient

90C

KAIST

(ibs)

High Frequency Gravitational Wave Sources - Transient

KΛ

90C

High Frequency Gravitational Wave Sources - Stochastic

- High-frequency gravitational wave (GW) search will open the new window for astrophysics and cosmology.
- Cavity haloscope for dark matter axion search also can detect signals from the interaction between electromagnetic (EM) resonant mode and high-frequency gravitational wave.
- Cavity experiment have enough sensitivity to target transient signal from primordial blackhole binaries which supported by Optical Gravitational Lensing Experiment (OGLE).
- Understanding the background physics under EM-GW interaction and new data analysis method is required.
- > Stochastic gravitational wave detection needs new experimental concept.