- Ram pressure stripping
 - Hydrodynamical process directly blowing the ISM away from galaxies

$$P_{
m ram} \sim
ho_{
m ICM} v^2$$
 (Gunn&Gott 72)

- Featured by multiphase tails (CO, HI, Hα, and even X-ray)
- Young stars are detected in the wakes of some ram pressure stripped (RPS) galaxies

Chung+09

42.0 RA(J2000) 11:43:30.0

- Jellyfish galaxies galaxies with characteristic tail features
 - How do the prominent features form?
- Main topics on my studies
 - Impact of ram pressure stripping on galaxies with a multiphase ISM (Lee+20)
 - Formation process of prominent jellyfish features (Lee+22)
 - Impact of magnetic fields on jellyfish galaxies (Lee+in prep)
- Methodology
 - Radiation (magneto-)hydrodynamical simulations for star-forming disk galaxies experiencing ram pressure in idealized environments

- RAMSES-RT
 - Developed by Teyssier 02; Rosdahl+13; Rosdahl & Teyssier 15
 - Based on an adaptive-mesh refinement code, RAMSES
 - Tracing 8 photon groups, from extreme ultraviolet (UV) to infra-red (IR)
 - \bullet

Photon group	ϵ_0 (eV)	ϵ_1 (eV)	$(\operatorname{cm}^2 \operatorname{g}^{-1})$	Main function	
IR	0.1	1.0	5	Radiation pressure (RP)	~124000-12400Å
Optical	1.0	5.6	10 ³	Direct RP	-2214Å
FUV	5.6	11.2	10 ³	Photoelectric heating	-1107Å
LW	11.2	13.6	10 ³	H ₂ dissociation	- 912Å
$EUV_{HI,1}$	13.6	15.2	10 ³	H _I ionization	- 816Å
EUV _{H I,2}	15.2	24.59	10^{3}	H I and H ₂ ionization	- 504Å
EUV _{HeI}	24.59	54.42	10 ³	He I ionization	-228Å
EUV _{He II}	54.42	∞	10 ³	He II ionization	>0Å

Computing non-equilibrium chemistry and cooling of HI, HII, HeI, HeII, HeII and e-

Kimm+17

- RAMSES-RT
 - Updated by Katz+17; Kimm+17, 18
 - - Formation of H₂ via dust and H⁻ channels
 - Destruction of H₂ via photo-dissociation and collisional ionization \bullet
 - Star formation efficiency (SFE) computed based on a thermo-turbulent model
 - SFE can vary, depending on the turbulent condition of the ISM
 - Mechanical and radiative SN feedback

• H₂ formation and dissociation is included based on a modified photochemistry model

Impact of Ram Pressure on Galaxies

- Simulation setup galaxies
 - Idealized wind-tunnel experiments
 - IC (G9) generated by Rosdahl+15 using MakeDisk (Springel+05)
 - Box size: 300kpc on a side
 - M_{halo}~10¹¹M_☉, R_{vir}=89 kpc
 - $M_{\star} \sim 2.1 \times 10^9 M_{\odot}$ (R_{1/2}~2.4kpc), $Z_{\star} = 0.75 Z_{\odot}$
 - Gas content
 - Normal gas fraction : $M_{HI}/M_{\star} \sim 0.54 (1.1 \times 10^9 M_{\odot})$
 - Cell resolution down to 18pc

- Simulation setup galaxies
 - Idealized wind-tunnel experiments
 - IC (G9) generated by Rosdahl+15 using MakeDisk (Springel+05)
 - Box size: 300kpc on a side
 - M_{halo}~10¹¹M_☉, R_{vir}=89 kpc
 - $M_{\star} \sim 2.1 \times 10^9 M_{\odot}$ (R_{1/2}~2.4kpc), $Z_{\star} = 0.75 Z_{\odot}$
 - Gas content
 - Normal gas fraction : $M_{HI}/M_{\star} \sim 0.54 (1.1 \times 10^9 M_{\odot})$
 - Cell resolution down to 18pc

- Simulation setup 4 runs
 - Isolated environment no wind (control sample)
 - NoWind
 - Mild winds to mimic ram pressure at the cluster outskirts (v_{wind}=1,000km s⁻¹, T_{ICM} ~3×10⁷K, n_H=3×10⁻⁴cm⁻³, Z_{ICM}=0.3Z_☉)
 - Face-on wind (FaceWind)
 - Edge-on wind (EdgeWind)
 - Strong face-on winds to mimic ram pressure at the cluster center (v_{wind}=1,000km s⁻¹, T_{ICM} ~3×10⁷K, n_H=3×10⁻³cm⁻³, Z_{ICM}=0.3Z_☉)
 - Strong face-on wind (FaceWind10)

