- Simulation setup 4 runs
 - Isolated environment no wind (control sample) \bullet
 - NoWind
 - Mild winds to mimic ram pressure at the cluster outskirts ($v_{wind}=1,000$ km s⁻¹, $T_{ICM} \sim 3 \times 10^7$ K, $n_{\rm H}=3\times10^{-4}cm^{-3}$, ZICM=0.3Z_☉)
 - Face-on wind (FaceWind)
 - Edge-on wind (EdgeWind)
 - Strong face-on winds to mimic ram pressure at the cluster center (v_{wind}=1,000km s⁻¹, T_{ICM} ~3×10⁷K, $n_{\rm H}=3\times10^{-3}cm^{-3}$, ZICM=0.3Z_☉)
 - Strong face-on wind (FaceWind10)

• FaceWind - Mild wind (n_H~3×10⁻⁴ cm⁻³, v_{wind}=10³km s⁻¹)

FaceWind10 - Strong wind (n_H~3×10⁻⁴ cm⁻³, v_{wind}=10³km s⁻¹)

0.0001 0.0010 0.0100 0.1000 1.0000

EdgeWind - Mild wind (n_H~3×10⁻⁴ cm⁻³, v_{wind}=10³km s⁻¹)

0.0001 0.0010 0.0100 0.1000 1.0000

• Impact of RPS on the gaseous disk

- Gas phase evolution 4

- Impact of RPS on disk SF
 - Mild ICM winds rather enhance SF activities in the disk
 - Strong ram pressure (~cluster center) can quench galaxies.
 - SF can be boosted in the early phase of infall?
 - reported by observations, e.g., Lee+17, Vulcani+18

• Birthplace of new stars in the mild edge-on wind run

- Clumpy molecular clouds are barely formed in the RPS tail \bullet
 - lacksquarestill deficient.

When the ICM temperature is lowered, it leads to efficient gas cooling in the tail, but clumpy clouds are

- Summary so far
 - Ram pressure can efficiently strip gaseous disks
 - Mild ram pressure compresses ISM, rather enhancing star formation \bullet

 - No molecular clumps form in the tail

Strong ram pressure strongly suppresses star formation by quickly blowing most ISM

Formation of Prominent Jellyfish Galaxies

- Going back to observed RPS galaxies with abundant molecular tails...
 - ESO137-001 (Jachym+19), D100 (Jachym+17), JO201, JO204, JO206, JW100 (Moretti+18) : $M_{H_2} \sim 10^9 M_{\odot}$ estimated in their tails
 - experiencing strong ram pressure at the cluster center

Jachym+19

• Stellar mass varies $(2 \times 10^9 - 3 \times 10^{10} \,\mathrm{M_{\odot}})$, but they are commonly gas-rich in their disks,

Jachym+17

- Simulation setup galaxies
 - Idealized wind-tunnel experiments
 - IC (G9) generated by Rosdahl+15 using MakeDisk (Springel+05)
 - Box size: 300kpc on a side
 - M_{halo}~10¹¹M_☉, R_{vir}=89 kpc
 - $M_{\star} \sim 2.1 \times 10^9 M_{\odot}$ (R_{1/2}~2.4kpc), $Z_{\star} = 0.75 Z_{\odot}$
 - Gas content
 - Normal gas fraction : $M_{HI}/M_{\star} \sim 0.54 (1.1 \times 10^9 M_{\odot})$
 - High gas fraction (5x of normal) : $M_{HI}/M_{\star} \sim 2.6$ (5.4×10⁹M_☉)
 - Cell resolution down to 18pc

