- Simulation setup galaxies
 - Idealized wind-tunnel experiments
 - IC (G9) generated by Rosdahl+15 using MakeDisk (Springel+05)
 - Box size: 300kpc on a side
 - M_{halo}~10¹¹M_☉, R_{vir}=89 kpc
 - $M_{\star} \sim 2.1 \times 10^9 M_{\odot}$ (R_{1/2}~2.4kpc), $Z_{\star} = 0.75 Z_{\odot}$
 - Gas content
 - Normal gas fraction : $M_{HI}/M_{\star} \sim 0.54 (1.1 \times 10^9 M_{\odot})$
 - High gas fraction (5x of normal) : $M_{HI}/M_{\star} \sim 2.6$ (5.4×10⁹M_☉)
 - Cell resolution down to 18pc

Normal

Gas-rich

- Simulation setup galaxies
 - Idealized wind-tunnel experiments
 - IC (G9) generated by Rosdahl+15 using MakeDisk (Springel+05)
 - Box size: 300kpc on a side
 - M_{halo}~10¹¹M_☉, R_{vir}=89 kpc
 - $M_{\star} \sim 2.1 \times 10^9 M_{\odot}$ ($R_{1/2} \sim 2.4 \text{kpc}$), $Z_{\star} = 0.75 Z_{\odot}$
 - Gas content
 - Normal gas fraction : $M_{HI}/M_{\star} \sim 0.54 (1.1 \times 10^9 M_{\odot})$
 - High gas fraction (5x of normal) : $M_{HI}/M_{\star} \sim 2.6$ (5.4×10⁹M_☉)
 - Cell resolution down to 18pc

Normal

Gas-rich

- Simulation setup
 - Isolated environment no wind (control sample)
 - Gas-rich galaxy (NoWind_rich)

- Strong face-on winds to mimic ram pressure at the cluster center (v_{wind}=1,000km s⁻¹, T_{ICM} ~10⁷K, $n_{\rm H}=3\times10^{-3}cm^{-3}$, ZICM=0.3Z_☉)
 - Gas-rich galaxy (FaceWind10_rich)
 - Normal galaxy (FaceWind10, adopted from the previous study)

• FaceWind10 - a normal galaxy encountering a strong wind

FaceWind10_rich - gas-rich galaxy encountering a strong wind

- Star formation rate (SFR) evolution
 - Disk star formation (SF) is quenched over time after encountering the ICM winds
 - SFRs decrease in the normal and gas-rich galaxies with similar rates
 - SF is boosted at the center (r<<1kpc) due to gas compression by the ICM winds
 - Evident tail SF is observed in FaceWind10_rich
 - Tail SFR~10⁻³-10⁻² M_{\odot} /yr comparable with observations (e.g. D100 in Coma)

- Birthplace of stars in the gas-rich galaxy as a function of time \bullet
 - No stars form in z>3kpc after t~100Myr in the NoWind_rich galaxy

Stars form in the tail of the FaceWind10_rich galaxy after encountering the wind (t>130Myr)

- Birthplace of stars in the gas-rich galaxy as a function of time \bullet
 - No stars form in z>3kpc after t~100Myr in the NoWind_rich galaxy

Stars form in the tail of the FaceWind10_rich galaxy after encountering the wind (t>130Myr)

- Source of tail SF
 - Most (~90%) tail SF occurs in the near wake (z<10kpc) of the FaceWind10_rich galaxy
 - Their origin is mostly stripped ISM
 - Distant stars form in clouds that are mixed well with the ICM
 - Indicating the formation of molecular clumps in the RPS tail
 - * Metallicity is not enriched by stars

$$f_{\rm ISM} = \frac{Z - Z_{\rm ICM}}{Z_{\rm ISM} - Z_{\rm ICM}} \quad (Z_{\rm ICM} = 0.3 Z_{\odot}, Z_{\rm ISM})$$

- Origin of tail molecular clumps
 - Molecular hydrogen clumps (n_H>100cm⁻³) form far behind (z~60-80kpc) the galactic disk of the FaceWind10_rich galaxy
 - No dense clumps form in the tail of the FaceWind10 galaxy
 - Two galaxies have significantly different gas t_{cool} in their tails
 - FaceWind10 : poor ionized gas with short t_{cool}
 - FaceWind10_rich : plenty ionized gas with t_{cool}<1Myr that can collapse within ~100Myr

- Origin of tail molecular clumps
 - Molecular hydrogen clumps (n_H>100cm⁻³) form far behind (z~60-80kpc) the galactic disk of the FaceWind10_rich galaxy
 - No dense clumps form in the tail of the FaceWind10 galaxy
 - Two galaxies have significantly different gas t_{cool} in their tails
 - FaceWind10 : poor ionized gas with short t_{cool}
 - FaceWind10_rich : plenty ionized gas with t_{cool}<1Myr that can collapse within ~100Myr

- Origin of tail molecular clumps
 - Molecular hydrogen clumps (n_H>100cm⁻³) form far behind (z~60-80kpc) the galactic disk of the FaceWind10_rich galaxy
 - No dense clumps form in the tail of the FaceWind

Two galax in their tains

- FaceWind10 : poor ionized gas with short t_{cool}
- FaceWind10_rich : plenty ionized gas with t_{cool}<1Myr that can collapse within ~100Myr

f_{ICM} =1-fISM

- What is the evidence of mixing? Hα-to-Xray flux correlation in the RPS tails
 - A strong correlation is reported by Sun+21
 - $F_X/F_{H\alpha}$ ~3.5 in RPS tails, on average
 - Measured on a scale of 10×10kpc²
 - The source of the Hα and Xray photons are fundamentally different: T_{gas}~10⁴K vs T_{gas}~10⁷K
 - Strongly evidencing mixing between the ICM and stripped ISM in RPS tails?

X-ray flux (10³⁸ erg/s/kpc²)

- Hα and X-ray emissivity of the FaceWind10_rich galaxy
 - Hα: computed for recombinative and collisional excitation processes
 - X-ray: computed using Astrophysical Plasma Emission Code (Smith+01)

- Hα Xray SB correlation in the RPS tail of the FaceWind10_rich galaxy
 - F_x measured in 0.4-7.5keV and converted into bolometric flux, following observations (Sun+21)
 - $F_X/F_{H\alpha}$ ~1800 in the ICM

~1.5-20 in the tail (c.f. F_X/F_{Ha}~3.5 in Sun+21)-

< 1.5 in the disk

- F_{ISM} tightly correlates with $F_X/F_{H\alpha}$
 - $F_X/F_{H\alpha}$ increase with decreasing f_{ISM}

Caveats

- Missing physics Magnetic fields, thermal conduction
- Idealized setup Tail features can be different in live haloes

- Interesting scientific issues to be addressed
 - Some molecular-rich tails are weakly or not detected in HI (e.g. ESO137-001 and D100)
 - All cooled? preferentially ionized?

- Summary
 - jellyfish galaxies with distinct features
 - Strong ram pressure efficiently suppresses star formation in a gas-rich galaxy
 - Considerable amount of stars can form in the RPS tail of the gas-rich galaxy
 - Molecular clumps can form in-situ in the RPS tail from warm ionized gas produced by mixing between the ICM and ISM
 - The mixing results in the characteristic Xray-to-Halpha flux ratio in the RPS tails

• The abundant ISM stripped by strong ram pressure plays a critical role in the formation of

Jellyfish Galaxies in Magnetic Fields

- Magnetic fields in the ICM
 - Strong B-fields are observed in the ICM (typical $|B| \sim 1\mu G$, e.g., Carilli & Taylor 02)
 - B-fields stabilize clouds and suppress the growth of instabilities between two flows \bullet

