- Tail B-fields are aligned with the direction of the jellyfish tails
 - Mixing is further suppressed by the B-fields aligned with flows \bullet

MHD wind-cloud interaction simulations (Banda-Barragán+16)

- Impact of magnetic fields on fluids (1)
 - Inducing magnetic pressure that stabilizes a cloud against gravitational collapse

Iowering star formation efficiency (e.g., Federrath+12)

- Guiding the flows

Suppressing instabilities that induce cloud fragmentation or generate turbulence

- Impact of magnetic fields on fluids (2)
 - Magnetic tension can suppress the growth of Kelvin-Helmholtz instabilities

Weak B-field

E:_).

Strong B-field

2D MHD simulations

- Simulations
 - Code: **RAMSES-RT** (Rosdahl+13, Rosdahl & Teyssier15) + H₂ formation and dissociation processes (Katz+17; Kimm+17, 18)
 - G9 (Rosdahl+15): M_{halo}~10¹¹M_☉, M_★~3×10⁹M_☉, M_{Hl}~2×10⁹M_☉, M_{H2}~4×10⁸M_☉ (after relaxation)
 - Resolution : $\Delta x = 18 \text{ pc}$, $M_{\star} = 10^{3} M_{\odot 2} 10^{-1} 2^{-3}$
 - Disks initially have B_x=0µG (gB0) or 0.1µG (gB1)

Most probable maximum values of empirical relation from Crutcher+10

- Simulations in a wind-tunnel \bullet
 - Winds commonly have v_{ICM}=1,000km/s, n_H=3×10⁻³cm⁻³, and $T = 3 \times 10^{7} K$

Two winds have $B_x=0\mu G$ (HD winds) and $B_x=1\mu G$ (MHD winds)

	Model	$n_{ m H,ICM}$	$v_{ m ICM}$	$P_{ m ram}/k_{ m H}$
		$[{\rm cm}^{-3}]$	$[\mathrm{kms^{-1}}]$	$[\mathrm{cm}^{-3}\mathrm{K}]$
No winds	gB0	10^{-6}	0	0
(control sample)	gB1	10^{-6}	0	0
Pure hydro	gB0_wHD	3×10^{-3}	10^{3}	5×10^5
ICM	gB1_wHD	3×10^{-3}	10^{3}	5×10^5
Magnetized	gB0_wMHD	3×10^{-3}	10^{3}	5×10^5
ICM	gB1_wMHD	3×10^{-3}	10^3	5×10^5

- Cold gas $(HI+H_2)$ in the disks in the face-on view (just after the winds arrival)
 - Disk clouds are less fragmented and smoother in the MHD wind runs

no wind

disks **DH**

HD disks Σ

HD winds

MHD winds

Cold gas (HI+H₂)

- - Tail clouds are also less fragmented and smoother in the MHD wind runs

no wind

HD disks

HD disks Σ

• Cold gas (HI+H₂) in the disks and near tails in the edge-on view (just after the winds arrival)

HD winds

MHD winds

Cold gas (HI+H₂)

- Disk gas stripping
 - B-fields in disks do not appear to be as significant as those in the ICM for disk gas stripping
 - Disk gas is stripped more by the MHD winds than the HD winds
 - However, previous studies have shown the opposite
 - Magnetic draping layers suppress mixing, resulting in lower disk gas stripping

(e.g., Ruszkowski+14, Tonnessen+14, Ramos-Martínez+18)

- Magnetic draping layers always reduce the stripping rate of disk gas?
 - Not the case for galaxies with star formation and cooling in this study

Stellar feedback makes disks turbulent and porous

- RPS tail morphology

• Tail clouds are more fragmented and smoothed when the galaxies undergo the MHD winds

- RPS tail morphology
 - \bullet

Tail clouds are more fragmented and smoothed when the galaxies undergo the MHD winds

- Tail star formation (Tail R<12kpc, z>3kpc) \bullet
 - Stars form in the distant tail in the HD wind run Plenty of warm ionized clouds form via mixing, which cool, collapse, and form stars in the distant tail
 - Tail stars form only in the near wakes in the MHD wind run

- Stripped clouds form many stars in the near tail, but gradually evaporate as they travel
 - Birthplace of stars after wind launch

